A Metal-Based Receptor for Selective Coordination and Fluorescent Sensing of Chloride
A scorpionate Zn2+ complex, constituted by a macrocyclic pyridinophane core attached to a pendant arm containing a fluorescent pyridyl-oxadiazole-phenyl unit (PyPD), has been shown to selectively recognize chloride anions, giving rise to changes in fluorescence emission that are clearly visible under a 365 nm UV lamp. This recognition event has been studied by means of absorption, fluorescence, and NMR spectroscopy, and it involves the intramolecular displacement of the PyPD unit by chloride anions. Moreover, since the chromophore is not removed from the system after the recognition event, the fluorescence can readily be restored by elimination of the bound chloride anion.
A novel 2,6-bis(benzoxazolyl)phenol macrocyclic chemosensor with enhanced fluorophore properties by photoinduced intramolecular proton transfer
Macrocyclic ligand L, in which a 2,6-bis(2-benzoxazolyl)phenol (bis-HBO) group is incorporated in triethylenetetramine, was designed and synthesized with the aim of creating a chemosensor with high selectivity and specificity for metal cations in an aqueous environment. The availability of several proton acceptors and donors, and amine and phenol hydroxy groups, respectively, affects the keto-enol equilibrium in both the ground and excited states, and the ligand properties show dependence on the pH of the solution. L is fluorescent in the visible range, through an excited-state intramolecular proton transfer (ESIPT) mechanism. The results of an exhaustive characterization of L by spectrosco…