0000000000471771

AUTHOR

F. Christensen

The NHXM observatory

Exploration of the X-ray sky has established X-ray astronomy as a fundamental astrophysical discipline. While our knowledge of the sky below 10 keV has increased dramatically (∼8 orders of magnitude) by use of grazing incidence optics, we still await a similar improvement above 10 keV, where to date only collimated instruments have been used. Also ripe for exploration is the field of X-ray polarimetry, an unused fundamental tool to understand the physics and morphology of X-ray sources. Here we present a novel mission, the New Hard X-ray Mission (NHXM) that brings together for the first time simultaneous high-sensitivity, hard-X-ray imaging, broadband spectroscopy and polarimetry. NHXM will…

research product

ORIGIN: metal creation and evolution from the cosmic dawn

Herder, Jan-Willem den et al.

research product

XRASE: the X-ray spectroscopic explorer

The X-Ray Spectroscopic Explorer (XRASE) has a unique combination of features that will make it possible to address many of NASA's scientific goals. These include how galaxy clusters form, the physics and chemistry of the ISM, the heating of stellar coronae, the amount and content of intergalactic baryonic matter, the mass of black holes and the formation of disks and jets in AGN and galactic binaries. XRASE has a thin foil, multilayered telescope with a large collecting area up to 10 keV, especially in the Fe Kα region (1100 cm2). Its microcalorimeter array combines high energy resolution (7 eV at 6 keV) and efficiency with a field-of-view of 26 arcmin2. A deep orbit allows for long, conti…

research product