0000000000472026

AUTHOR

S. Frullani

showing 54 related works from this author

Search for Effects Beyond the Born Approximation in Polarization Transfer Observables ine→pElastic Scattering

2011

Intensive theoretical and experimental efforts over the past decade have aimed at explaining the discrepancy between data for the proton electric to magnetic form factor ratio, $$G_{E}/G_{M}$$, obtained separately from cross section and polarization transfer measurements. One possible explanation for this difference is a two-photon-exchange (TPEX) contribution. In an effort to search for effects beyond the one-photon-exchange or Born approximation, we report measurements of polarization transfer observables in the elastic $$H(\vec{e},e'\vec{p})$$ reaction for three different beam energies at a fixed squared momentum transfer $Q^2 = 2.5$ GeV$^2$, spanning a wide range of the virtual photon p…

Elastic scatteringPhysicsParticle physics010308 nuclear & particles physicsHadronMomentum transferGeneral Physics and AstronomyElementary particle01 natural sciencesBaryon0103 physical sciencesMagnetic form factorHigh Energy Physics::ExperimentBorn approximation010306 general physicsNucleonPhysical Review Letters
researchProduct

Virtual Compton scattering and the generalized polarizabilities of the proton atQ2=0.92and 1.76 GeV2

2012

Virtual Compton Scattering (VCS) on the proton has been studied at Jefferson Lab using the exclusive photon electroproduction reaction (e p --> e p gamma). This paper gives a detailed account of the analysis which has led to the determination of the structure functions P{sub LL}-P{sub TT}/epsilon and P{sub LT}, and the electric and magnetic generalized polarizabilities (GPs) alpha{sub E}(Q{sup 2}) and beta{sub M}(Q{sup 2}) at values of the four-momentum transfer squared Q{sup 2} = 0.92 and 1.76 GeV{sup 2}. These data, together with the results of VCS experiments at lower momenta, help building a coherent picture of the electric and magnetic GPs of the proton over the full measured Q{sup 2}-…

PhysicsNuclear and High Energy PhysicsParticle physicsPhotonChiral perturbation theoryProton010308 nuclear & particles physicsStructure functionCompton scattering01 natural sciencesNuclear physicsAmplitudeDispersion relation0103 physical sciencesBeta (velocity)010306 general physicsPhysical Review C
researchProduct

Rosenbluth Separation of the π^{0} Electroproduction Cross Section.

2016

We present deeply virtual $\pi^0$ electroproduction cross-section measurements at $x_B$=0.36 and three different $Q^2$--values ranging from 1.5 to 2 GeV$^2$, obtained from experiment E07-007 that ran in the Hall A at Jefferson Lab. The Rosenbluth technique was used to separate the longitudinal and transverse responses. Results demonstrate that the cross section is dominated by its transverse component, and thus is far from the asymptotic limit predicted by perturbative Quantum Chromodynamics. An indication of a non-zero longitudinal contribution is provided by the interference term $\sigma_{LT}$ also measured. Results are compared with several models based on the leading twist approach of G…

Particle physicslongitudinalinterferenceGeneral Physics and Astronomyparton: distribution functionPartonhard exclusive electroproduction; mesons[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesHigh Energy Physics - ExperimentNuclear physicspi: distribution amplitudegeneralized parton distribution: transversityPiondeep inelastic scattering0103 physical scienceshard exclusive electroproduction[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]quantum chromodynamics: perturbation theory010306 general physicsNuclear ExperimentNuclear ExperimentmesonsQuantum chromodynamicsPhysics010308 nuclear & particles physicsscattering amplitudemomentum transferSigmanucleon: generalized parton distributionScattering amplitudetransverseDistribution (mathematics)Amplitudepi0: electroproductiontwistHigh Energy Physics::ExperimentNucleonchannel cross section: measuredJefferson Labexperimental resultsPhysical review letters
researchProduct

A glimpse of gluons through deeply virtual compton scattering on the proton

2017

The internal structure of nucleons (protons and neutrons) remains one of the greatest outstanding problems in modern nuclear physics. By scattering high-energy electrons off a proton we are able to resolve its fundamental constituents and probe their momenta and positions. Here we investigate the dynamics of quarks and gluons inside nucleons using deeply virtual Compton scattering (DVCS)—a highly virtual photon scatters off the proton, which subsequently radiates a photon. DVCS interferes with the Bethe-Heitler (BH) process, where the photon is emitted by the electron rather than the proton. We report herein the full determination of the BH-DVCS interference by exploiting the distinct energ…

Genetics and Molecular Biology (all)PhotonProtonHigh Energy Physics::LatticeNuclear TheoryGeneral Physics and AstronomyVirtual particleparton: distribution functionBiochemistry01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]p: structure functionNuclear Experiment (nucl-ex)[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]lcsh:ScienceNuclear ExperimentNuclear ExperimentPhysicsenergy: highMultidisciplinarystrong interactionChemistry (all)QCompton scattering: form factorphoton: energy spectrumHigh Energy Physics - Phenomenologyconfinementelectron p --> electron p photonchannel cross section: measuredQuarkelectron p: deep inelastic scatteringParticle physicselectron: polarized beamScienceStrong interactionFOS: Physical sciencesBethe-Heitler[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]ArticleGeneral Biochemistry Genetics and Molecular Biologyenergy dependencequarkPhysics and Astronomy (all)[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]photon: emissiondeeply virtual Compton scattering0103 physical sciencesstructure010306 general physicsquantum mechanics: interference010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyCompton scatteringGeneral ChemistrygluonsensitivityGluon[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Quark–gluon plasmalcsh:Q[ PHYS.HPHE ] Physics [physics]/High Energy Physics - Phenomenology [hep-ph]High Energy Physics::ExperimentholographyChemistry (all); Biochemistry Genetics and Molecular Biology (all); Physics and Astronomy (all)photon: virtualexperimental results
researchProduct

New Measurements of the Transverse Beam Asymmetry for Elastic Electron Scattering from Selected Nuclei

2012

We have measured the beam-normal single-spin asymmetry $A_n$ in the elastic scattering of 1-3 GeV transversely polarized electrons from $^1$H and for the first time from $^4$He, $^{12}$C, and $^{208}$Pb. For $^1$H, $^4$He and $^{12}$C, the measurements are in agreement with calculations that relate $A_n$ to the imaginary part of the two-photon exchange amplitude including inelastic intermediate states. Surprisingly, the $^{208}$Pb result is significantly smaller than the corresponding prediction using the same formalism. These results suggest that a systematic set of new $A_n$ measurements might emerge as a new and sensitive probe of the structure of heavy nuclei.

Elastic scatteringPhysics010308 nuclear & particles physicsScatteringmedia_common.quotation_subjectFOS: Physical sciencesGeneral Physics and AstronomyElastic electronchemistry.chemical_elementElectron[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesAsymmetryAmplitudechemistryExcited state0103 physical sciencesNuclear Experiment (nucl-ex)Atomic physics010306 general physicsNuclear ExperimentNuclear ExperimentHeliummedia_common
researchProduct

Backward electroproduction ofπ0mesons on protons in the region of nucleon resonances at four momentum transfer squaredQ2=1.0GeV2

2004

Exclusive electroproduction of pi{sup 0} mesons on protons in the backward hemisphere has been studied at Q2 = 1.0 GeV2 by detecting protons in the forward direction in coincidence with scattered electrons from the 4 GeV electron beam in Jefferson Lab's Hall A. The data span the range of the total (gamma*p) center-of-mass energy W from the pion production threshold to W = 2.0 GeV. The differential cross sections sigma{sub T} + epsilon sigma{sub L}, sigma{sub TL}, and sigma{sub TT} were separated from the azimuthal distribution and are presented together with the MAID and SAID parameterizations.

PhysicsNuclear and High Energy PhysicsParticle physicsMeson010308 nuclear & particles physicsNuclear TheoryHadronMomentum transferSigma01 natural sciencesNuclear physicsBaryonPion0103 physical sciencesHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsNucleonLeptonPhysical Review C
researchProduct

Virtual Compton Scattering and Neutral Pion Electroproduction in the Resonance Region up to the Deep Inelastic Region at Backward Angles

2009

We have made the first measurements of the virtual Compton scattering (VCS) process via the H$(e,e'p)\gamma$ exclusive reaction in the nucleon resonance region, at backward angles. Results are presented for the $W$-dependence at fixed $Q^2=1$ GeV$^2$, and for the $Q^2$-dependence at fixed $W$ near 1.5 GeV. The VCS data show resonant structures in the first and second resonance regions. The observed $Q^2$-dependence is smooth. The measured ratio of H$(e,e'p)\gamma$ to H$(e,e'p)\pi^0$ cross sections emphasizes the different sensitivity of these two reactions to the various nucleon resonances. Finally, when compared to Real Compton Scattering (RCS) at high energy and large angles, our VCS data…

Elastic scatteringPhysicsNuclear and High Energy PhysicsParticle physics010308 nuclear & particles physicsScatteringCompton scatteringResonanceFOS: Physical sciencesInelastic scattering[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]Deep inelastic scattering01 natural sciencesHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)Pion0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Nuclear Experiment (nucl-ex)010306 general physicsNucleonNuclear Experiment
researchProduct

The OLYMPUS Experiment

2014

Nuclear instruments & methods in physics research / A 741, 1 - 17 (2014). doi:10.1016/j.nima.2013.12.035

two-photon [exchange]Physics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsHadronluminosity: monitoringRecoil4-MOMENTUM TRANSFERSNuclear Experiment (nucl-ex)Nuclear ExperimentInstrumentationNuclear ExperimentPhysicsElastic scatteringLuminosity (scattering theory)ELECTROMAGNETIC FORM-FACTORSInstrumentation and Detectors (physics.ins-det)elastic scattering [cross section]positron p: elastic scatteringAntimatterdrift chamberelastic scattering [electron p]target [hydrogen]proportional chamberCROSS-SECTIONNuclear and High Energy PhysicsELECTRON-PROTONDESY DORIS StorFOS: Physical sciencesmonitoring [luminosity]time-of-flight530electron p: elastic scatteringNuclear physicsCross section (physics)RATIO(GEV/C)(2)p: form factor: ratiocalorimeterddc:530cross section: elastic scatteringactivity reporthydrogen: targetexchange: two-photonScatteringPOSITRONSDESYelastic scattering [positron p]magnetic spectrometerELECTROMAGNETIC FORM-FACTORS; PROTON ELASTIC-SCATTERING; 4-MOMENTUM TRANSFERS; ELECTRON-PROTON; CROSS-SECTION; RATIO; (GEV/C)(2); POSITRONSform factor: ratio [p]gas electron multiplierPhysics::Accelerator PhysicsPROTON ELASTIC-SCATTERINGHigh Energy Physics::Experiment
researchProduct

Deeply virtual compton scattering off the neutron.

2007

The present experiment exploits the interference between the Deeply Virtual Compton Scattering (DVCS) and the Bethe-Heitler processes to extract the imaginary part of DVCS amplitudes on the neutron and on the deuteron from the helicity-dependent D$({\vec e},e'\gamma)X$ cross section measured at $Q^2$=1.9 GeV$^2$ and $x_B$=0.36. We extract a linear combination of generalized parton distributions (GPDs) particularly sensitive to $E_q$, the least constrained GPD. A model dependent constraint on the contribution of the up and down quarks to the nucleon spin is deduced.

QuarkPhysicsParticle physicsPhoton010308 nuclear & particles physicsScatteringHigh Energy Physics::PhenomenologyNuclear TheoryCompton scatteringFOS: Physical sciencesGeneral Physics and AstronomyVirtual particleParton[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciencesNuclear physicsIsospin0103 physical sciences25.30.-c 13.60.Fz 13.85.Hd 14.20.DhHigh Energy Physics::ExperimentNuclear Experiment (nucl-ex)010306 general physicsNucleonNuclear ExperimentNuclear ExperimentPhysical review letters
researchProduct

Measurement of double-polarization asymmetries in the quasi-elastic Process

2018

We report on a precise measurement of double-polarization asymmetries in electron-induced breakup of He3 proceeding to pd and ppn final states, performed in quasi-elastic kinematics at Q2=0.25(GeV/c)2 for missing momenta up to 250MeV/c. These observables represent highly sensitive tools to investigate the electromagnetic and spin structure of He3 and the relative importance of two- and three-body effects involved in the breakup reaction dynamics. The measured asymmetries cannot be satisfactorily reproduced by state-of-the-art calculations of He3 unless their three-body segment is adjusted, indicating that the spin-dependent part of the nuclear interaction governing the three-body breakup pr…

PhysicsNuclear and High Energy Physics010308 nuclear & particles physicsNuclear TheoryObservableKinematicsSpin structurePolarization (waves)Breakup01 natural sciencesp-processNuclear interactionNuclear physicsReaction dynamics0103 physical sciencesNuclear Experiment010306 general physicsPhysics Letters
researchProduct

Separation of theH2(e,e’p) structure functions up to 0.9 GeV/cmomentum transfer

1994

Longitudinal, transverse, and longitudinal-transverse structure functions for the $^{2}\mathrm{H}$(e,e'p) reaction have been determined. Measurements of the cross sections were made in-plane in nearly quasielastic kinematics spanning momentum transfers between 200 and 670 MeV/c and recoil momenta between 0 and 150 MeV/c. In addition, cross sections at momentum transfers above 800 MeV/c were measured at backward scattering angles in aligned kinematics where the response is predominantly transverse. We compared our data with both relativistic and nonrelativistic models. Our results are not consistently in agreement with any of the calculations based on these models. The disagreement between o…

PhysicsNuclear reactionNuclear and High Energy PhysicsNuclear TheoryMomentum transferHadronNuclear physicsBaryonMomentumRecoilPhysics::Accelerator PhysicsAtomic physicsNuclear ExperimentNucleonRelativistic quantum chemistryPhysical Review C
researchProduct

Measurement of azimuthal asymmetries associated with deeply virtual Compton scattering on a longitudinally polarized deuterium target

2010

Azimuthal asymmetries in exclusive electroproduction of a real photon from a longitudinally polarized deuterium target are measured with respect to target polarization alone and with respect to target polarization combined with beam helicity and/or beam charge. The asymmetries appear in the distribution of the real photons in the azimuthal angle $\phi$ around the virtual photon direction, relative to the lepton scattering plane. The asymmetries arise from the deeply virtual Compton scattering process and its interference with the Bethe-Heitler process. The results for the beam-charge and beam-helicity asymmetries from a tensor polarized deuterium target with vanishing vector polarization ar…

Nuclear and High Energy Physics/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energyEVOLUTION KERNELS010308 nuclear & particles physicsGENERALIZED PARTON DISTRIBUTIONS; IMPACT PARAMETER SPACE; ELECTRON STORAGE-RING; EVOLUTION KERNELS; HERA; SPIN; NUCLEON; QCDHERAIMPACT PARAMETER SPACEFOS: Physical sciencesQCD01 natural sciencesHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)ELECTRON STORAGE-RINGSPINGENERALIZED PARTON DISTRIBUTIONS0103 physical sciencesddc:530High Energy Physics::ExperimentSDG 7 - Affordable and Clean EnergyNUCLEON010306 general physics
researchProduct

Measurement of the Charge-Averaged Elastic Lepton-Proton Scattering Cross Section by the OLYMPUS Experiment

2020

Physical review letters 126(16), 162501 (1-6) (2021). doi:10.1103/PhysRevLett.126.162501

ProtonPhysics::Instrumentation and Detectorselectromagnetic [calorimeter]elastic scatteringGeneral Physics and AstronomyElectronmomentum transfer dependence01 natural sciencesEconomicaelectromagnetic form factorsDESY LabNuclear Experiment (nucl-ex)Nuclear ExperimentNuclear ExperimentPhysicsElastic scatteringLuminosity (scattering theory)Form factor (quantum field theory)elastic scattering [cross section]recoil [p]beam [positron]target [hydrogen]electromagnetic [form factor]electron-proton scatteringSocio-culturaleFOS: Physical sciences530electron p: scatteringNuclear physicsCross section (physics)PE2_2PE2_10103 physical sciencesform factor [p]p: recoilddc:530cross section: elastic scattering010306 general physicsPE2_3hydrogen: targetNuclear Physicspositron p: scatteringAmbientalepositron-proton scatteringDESYscattering [electron p]form factor: electromagneticscattering [positron p]positron: beamcalorimeter: electromagneticp: form factorPhysics::Accelerator PhysicsHigh Energy Physics::Experimentspectrometerexperimental resultsLeptonPhysical Review Letters
researchProduct

Rosenbluth separation of the $\pi^0$ Electroproduction Cross Section off the Neutron

2017

We report the first longitudinal/transverse separation of the deeply virtual exclusive $\pi^0$ electroproduction cross section off the neutron and coherent deuteron. The corresponding four structure functions $d\sigma_L/dt$, $d\sigma_T/dt$, $d\sigma_{LT}/dt$ and $d\sigma_{TT}/dt$ are extracted as a function of the momentum transfer to the recoil system at $Q^2$=1.75 GeV$^2$ and $x_B$=0.36. The $ed \to ed\pi^0$ cross sections are found compatible with the small values expected from theoretical models. The $en \to en\pi^0$ cross sections show a dominance from the response to transversely polarized photons, and are in good agreement with calculations based on the transversity GPDs of the nucle…

longitudinalNuclear Theoryn: structure function[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]momentum transfer dependenceelectron n: scatteringHigh Energy Physics - Experimentgeneralized parton distribution: transversity[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]hard exclusive electroproductionrecoil[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]polarization: transverse[ PHYS.NEXP ] Physics [physics]/Nuclear Experiment [nucl-ex]Nuclear ExperimentNuclear Experimentmesonsflavorgeneralized parton distributionsscatteringgeneralized parton distributions; hard exclusive electroproduction; mesons; scatteringdeuteron: structure functionelectron deuteron --> electron deuteron pi0electron deuteron: deep inelastic scatteringnucleon: generalized parton distributionphoton: polarizationcoherencepi0: electroproductionHigh Energy Physics::Experimentexperimental results
researchProduct

"Table 28" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 36" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 17" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 40" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 39" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 9" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 22" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 31" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 34" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 33" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 6" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 11" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 37" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 29" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 1" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 21" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 25" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 2" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 32" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 5" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 16" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 24" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 23" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 14" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 26" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 20" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 8" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 10" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 13" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 27" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 38" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 35" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 15" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 30" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 19" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 12" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 4" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 3" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct

"Table 18" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity dependent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity dependent cross sectionExclusive
researchProduct

"Table 7" of "A glimpse of gluons through deeply virtual compton scattering on the proton"

2017

Beam helicity independent cross sections. The first systematic uncertainty is the combined correlated systematic uncertainty, the second is the point-to-point systematic uncertainty to add quadratically to the statistical uncertainty.

D4SIG/DQ**2/DX/DT/DPHIDeeply Virtual Compton ScatteringE- P --> E- GAMMA PBeam helicity independent cross sectionExclusive
researchProduct