0000000000472031

AUTHOR

G. Gavrilov

The magnet of the scattering and neutrino detector for the SHiP experiment at CERN

The Search for Hidden Particles (SHiP) experiment proposal at CERN demands a dedicated dipole magnet for its scattering and neutrino detector. This requires a very large volume to be uniformly magnetized at B > 1.2 T, with constraints regarding the inner instrumented volume as well as the external region, where no massive structures are allowed and only an extremely low stray field is admitted. In this paper we report the main technical challenges and the relevant design options providing a comprehensive design for the magnet of the SHiP Scattering and Neutrino Detector.

research product

Measurement of the chi(b) (3 P) mass and of the relative rate of chi(b1) (1 P) and chi(b2) (1 P) production

The production of $\chi_b$ mesons in proton-proton collisions is studied using a data sample collected by the LHCb detector, at centre-of-mass energies of $\sqrt{s}=7$ and $8$ TeV and corresponding to an integrated luminosity of 3.0 fb$^{-1}$. The $\chi_b$ mesons are identified through their decays to $\Upsilon(1S)\gamma$ and $\Upsilon(2S)\gamma$ using photons that converted to $e^+e^-$ pairs in the detector. The $\chi_b(3P)$ meson mass, and the relative prompt production rate of $\chi_{b1}(1P)$ and $\chi_{b2}(1P)$ mesons as a function of the $\Upsilon(1S)$ transverse momentum in the $\chi_b$ rapidity range 2.0< $y$<4.5, are measured. Assuming a mass splitting between the $\chi_{b1}(3P)$ an…

research product

Observation of charmonium pairs produced exclusively in $pp$ collisions

A search is performed for the central exclusive production of pairs of charmonia produced in proton-proton collisions. Using data corresponding to an integrated luminosity of $3{\rm\ fb}^{-1}$ collected at centre-of-mass energies of 7 and 8 TeV, $J/\psi J/\psi$ and $J/\psi\psi(2S)$ pairs are observed, which have been produced in the absence of any other activity inside the LHCb acceptance that is sensitive to charged particles in the pseudorapidity ranges $(-3.5,-1.5)$ and $(1.5,5.0)$. Searches are also performed for pairs of P-wave charmonia and limits are set on their production. The cross-sections for these processes, where the dimeson system has a rapidity between 2.0 and 4.5, are measu…

research product

Measurement of azimuthal asymmetries associated with deeply virtual Compton scattering on a longitudinally polarized deuterium target

Azimuthal asymmetries in exclusive electroproduction of a real photon from a longitudinally polarized deuterium target are measured with respect to target polarization alone and with respect to target polarization combined with beam helicity and/or beam charge. The asymmetries appear in the distribution of the real photons in the azimuthal angle $\phi$ around the virtual photon direction, relative to the lepton scattering plane. The asymmetries arise from the deeply virtual Compton scattering process and its interference with the Bethe-Heitler process. The results for the beam-charge and beam-helicity asymmetries from a tensor polarized deuterium target with vanishing vector polarization ar…

research product

Observation of $Z$ production in proton-lead collisions at LHCb

The first observation of $Z$ boson production in proton-lead collisions at a centre-of-mass energy per proton-nucleon pair of $\sqrt{s_{NN}}=5~\text{TeV}$ is presented. The data sample corresponds to an integrated luminosity of $1.6~\text{nb}^{-1}$ collected with the LHCb detector. The $Z$ candidates are reconstructed from pairs of oppositely charged muons with pseudorapidities between 2.0 and 4.5 and transverse momenta above $20~\text{GeV}/c$. The invariant dimuon mass is restricted to the range $60-120~\text{GeV}/c^2$. The $Z$ production cross-section is measured to be \begin{eqnarray*} ��_{Z\to��^+��^-}(\text{fwd})&amp;=&amp;13.5^{+5.4}_{-4.0}\text{(stat.)}\pm1.2\text{(syst.)}~\text{nb} …

research product

Measurement of the Charge-Averaged Elastic Lepton-Proton Scattering Cross Section by the OLYMPUS Experiment

Physical review letters 126(16), 162501 (1-6) (2021). doi:10.1103/PhysRevLett.126.162501

research product

Study of doubly strange systems using stored antiprotons

Bound nuclear systems with two units of strangeness are still poorly known despite their importance for many strong interaction phenomena. Stored antiprotons beams in the GeV range represent an unparalleled factory for various hyperon-antihyperon pairs. Their outstanding large production probability in antiproton collisions will open the floodgates for a series of new studies of systems which contain two or even more units of strangeness at the PANDA experiment at FAIR. For the first time, high resolution gamma-spectroscopy of doubly strange Lambda Lambda-hypernuclei will be performed, thus complementing measurements of ground state decays of Lambda Lambda-hypernuclei at J-PARC or possible …

research product

Fast simulation of muons produced at the SHiP experiment using Generative Adversarial Networks

This paper presents a fast approach to simulating muons produced in interactions of the SPS proton beams with the target of the SHiP experiment. The SHiP experiment will be able to search for new long-lived particles produced in a 400~GeV$/c$ SPS proton beam dump and which travel distances between fifty metres and tens of kilometers. The SHiP detector needs to operate under ultra-low background conditions and requires large simulated samples of muon induced background processes. Through the use of Generative Adversarial Networks it is possible to emulate the simulation of the interaction of 400~GeV$/c$ proton beams with the SHiP target, an otherwise computationally intensive process. For th…

research product

Nuclear-mass dependence of azimuthal beam-helicity and beam-charge asymmetries in deeply virtual Compton scattering

The nuclear-mass dependence of azimuthal cross section asymmetries with respect to charge and longitudinal polarization of the lepton beam is studiedfor hard exclusive electroproduction of real photons. The observed beam-charge and beam-helicity asymmetries are attributed to the interference between the Bethe-Heitler and deeply virtual Compton scattering processes. For various nuclei, the asymmetries are extracted for both coherent and incoherent-enriched regions, which involve different (combinations of) generalized parton distributions. For both regions, the asymmetries are compared to those for a free proton, and no nuclear-mass dependence is found.

research product

Measurement of CP asymmetries in the decays B0 → K*0 μ+μ- and B+ → K+ μ+μ-

The direct CP asymmetries of the decays B 0 → K *0 μ + μ − and B + → K + μ + μ − are measured using pp collision data corresponding to an integrated luminosity of 3.0 fb−1 collected with the LHCb detector. The respective control modes B 0 → J/ψK *0 and B + → J/ψK + are used to account for detection and production asymmetries. The measurements are made in several intervals of μ + μ − invariant mass squared, with the ϕ(1020) and charmonium resonance regions excluded. Under the hypothesis of zero CP asymmetry in the control modes, the average values of the asymmetries are ACP(B0→K∗0μ+μ−)=−0.035±0.024±0.003,ACP(B+→K+μ+μ−)=0.012±0.017±0.001, where the first uncertainties are statistical and the …

research product

Search for CP violation using T-odd correlations in D-0 -> K+K-pi(+)pi(-) decays

A search for $CP$ violation using $T$-odd correlations is performed using the four-body $D^0 \to K^+K^-\pi^+\pi^-$ decay, selected from semileptonic $B$ decays. The data sample corresponds to integrated luminosities of $1.0\,\text{fb}^{-1}$ and $2.0\,\text{fb}^{-1}$ recorded at the centre-of-mass energies of 7 TeV and 8 TeV, respectively. The $CP$-violating asymmetry $a_{CP}^{T\text{-odd}}$ is measured to be $(0.18\pm 0.29\text{(stat)}\pm 0.04\text{(syst)})\%$. Searches for $CP$ violation in different regions of phase space of the four-body decay, and as a function of the $D^0$ decay time, are also presented. No significant deviation from the $CP$ conservation hypothesis is found.

research product

The experimental facility for the Search for Hidden Particles at the CERN SPS

The Search for Hidden Particles (SHiP) Collaboration has shown that the CERN SPS accelerator with its 400 $\mathrm{\small GeV/c}$ proton beam offers a unique opportunity to explore the Hidden Sector. The proposed experiment is an intensity frontier experiment which is capable of searching for hidden particles through both visible decays and through scattering signatures from recoil of electrons or nuclei. The high-intensity experimental facility developed by the SHiP collaboration is based on a number of key features and developments which provide the possibility of probing a large part of the parameter space for a wide range of models with light long-lived superweakly interacting particles…

research product