0000000000472400

AUTHOR

Elodie Lacaze

showing 2 related works from this author

NFIB Haploinsufficiency Is Associated with Intellectual Disability and Macrocephaly

2018

The nuclear factor I (NFI) family of transcription factors play an important role in normal development of multiple organs. Three NFI family members are highly expressed in the brain, and deletions or sequence variants in two of these, NFIA and NFIX, have been associated with intellectual disability (ID) and brain malformations. NFIB, however, has not previously been implicated in human disease. Here, we present a cohort of 18 individuals with mild ID and behavioral issues who are haploinsufficient for NFIB. Ten individuals harbored overlapping microdeletions of the chromosomal 9p23-p22.2 region, ranging in size from 225 kb to 4.3 Mb. Five additional subjects had point sequence variations c…

Male0301 basic medicinechromosome 9p23Medical and Health SciencesCorpus CallosumCohort StudiesMice2.1 Biological and endogenous factorsMegalencephalyAetiologyChildAgenesis of the corpus callosumGenetics (clinical)PediatricGenetics & HeredityCerebral CortexMice KnockoutGeneticsSingle Nucleotidenuclear factor IBiological SciencesNFIBNFIXdevelopmental delayMental HealthNFIBCodon NonsenseNFIAintellectual disabilityChild Preschoolchromosome 9p22.3NeurologicalSpeech delayFemalemedicine.symptomHaploinsufficiencyAdultAdolescentKnockoutIntellectual and Developmental Disabilities (IDD)[SDV.GEN.GH] Life Sciences [q-bio]/Genetics/Human geneticsBiologymacrocephalyPolymorphism Single NucleotideArticleYoung Adult03 medical and health sciencesRare DiseasesBehavioral and Social ScienceGeneticsmedicinemegalencephalyAnimalsHumansPolymorphismCodonPreschoolNeurosciencesMacrocephalymedicine.diseaseBrain DisordershaploinsufficiencyNFI Transcription Factors030104 developmental biologyNonsense[SDV.GEN.GH]Life Sciences [q-bio]/Genetics/Human geneticsbiology.proteinagenesis of the corpus callosumAmerican journal of human genetics
researchProduct

Wilms' tumor in patients with 9q22.3 microdeletion syndrome suggests a role for PTCH1 in nephroblastomas

2012

Nephroblastoma (Wilms' tumor; WT) is the most common renal tumor of childhood. To date, several genetic abnormalities predisposing to WT have been identified in rare overgrowth syndromes. Among them, abnormal methylation of the 11p15 region, GPC3 and DIS3L2 mutations, which are responsible for Beckwith-Wiedemann, Simpson-Golabi-Behmel and Perlman syndromes, respectively. However, the underlying cause of WT remains unknown in the majority of cases. We report three unrelated patients who presented with WT in addition to a constitutional 9q22.3 microdeletion and dysmorphic/overgrowth syndrome. The size of the deletions was variable (ie, from 1.7 to 8.9 Mb) but invariably encompassed the PTCH1 …

AdultPatched Receptorsmedicine.medical_specialtyPathologyPTCH1AdolescentNonsense mutationCNVShort ReportReceptors Cell SurfaceBiologymedicine.disease_causeWilms’ tumorWilms TumorFetal MacrosomiaSettore MED/38 - Pediatria Generale E SpecialisticaPregnancyInternal medicineGeneticsmedicineHumansPerlman syndromeChildovergrowthGenetics (clinical)MutationComparative Genomic HybridizationWilms' tumorPTCH1 GeneMicrodeletion syndromeFANCC nephroblastomamedicine.diseaseKidney NeoplasmsPatched-1 ReceptorEndocrinologyPTCH1Settore MED/03 - Genetica MedicaOvergrowth syndromeMutationFemaleChromosome DeletionChromosomes Human Pair 9Comparative genomic hybridization
researchProduct