0000000000476701

AUTHOR

Renata Ferri

showing 2 related works from this author

Antibody-mediated blockade of JMJD6 interaction with collagen I exerts antifibrotic and antimetastatic activities

2017

JMJD6 is known to localize in the nucleus, exerting histone arginine demethylase and lysyl hydroxylase activities. A novel localization of JMJD6 in the extracellular matrix, resulting from its secretion as a soluble protein, was unveiled by a new anti-JMJD6 mAb called P4E11, which was developed to identify new targets in the stroma. Recombinant JMJD6 binds with collagen type I (Coll-I), and distinct JMJD6 peptides interfere with collagen fibrillogenesis, collagen-fibronectin interaction, and adhesion of human tumor cells to the collagen substrate. P4E11 and collagen binding to JMJD6 are mutually exclusive because the amino acid sequences of JMJD6 necessary for the interaction with Coll-I ar…

0301 basic medicineMonoclonal antibodyXenograft Model Antitumor AssayArginineLysyl hydroxylaseEnzyme-Linked Immunosorbent AssayReceptors Cell SurfacePlasma protein bindingBiochemistryCollagen Type IExtracellular matrix03 medical and health sciencesMiceFibrosisPeptide LibraryCell Line TumormedicineGeneticsAnimalsHumansOsteonectinCell NucleuMolecular BiologyCell NucleusMice KnockoutMice Inbred BALB CbiologyChemistryJmjC familyAnimalAntibodies MonoclonalFibrillogenesisExtracellular matrixmedicine.diseaseXenograft Model Antitumor AssaysImmunohistochemistryCell biologyIn vivo treatment030104 developmental biologybiology.proteinOsteonectinSignal transductionExtracellular matrix; In vivo treatment; JmjC family; Monoclonal antibody; Peptide library; Animals; Antibodies Monoclonal; Cell Line Tumor; Cell Nucleus; Collagen Type I; Enzyme-Linked Immunosorbent Assay; Extracellular Matrix; Humans; Immunohistochemistry; Mice; Mice Inbred BALB C; Mice Knockout; Osteonectin; Peptide Library; Protein Binding; Receptors Cell Surface; Signal Transduction; Xenograft Model Antitumor Assays; Biotechnology; Biochemistry; Molecular Biology; GeneticsHumanProtein BindingSignal TransductionBiotechnology
researchProduct

Castration-Induced Downregulation of SPARC in Stromal Cells Drives Neuroendocrine Differentiation of Prostate Cancer.

2021

Abstract Fatal neuroendocrine differentiation (NED) of castration-resistant prostate cancer is a recurrent mechanism of resistance to androgen deprivation therapies (ADT) and antiandrogen receptor pathway inhibitors (ARPI) in patients. The design of effective therapies for neuroendocrine prostate cancer (NEPC) is complicated by limited knowledge of the molecular mechanisms governing NED. The paucity of acquired genomic alterations and the deregulation of epigenetic and transcription factors suggest a potential contribution from the microenvironment. In this context, whether ADT/ARPI induces stromal cells to release NED-promoting molecules and the underlying molecular networks are unestablis…

MaleCancer ResearchStromal cellAnimals Biomarkers Tumor Cell Differentiation Cell Line Tumor Coculture Techniques Endoplasmic Reticulum Chaperone BiP Epigenesis Genetic Gene Expression Regulation Neoplastic Humans Male Mice Mice Inbred C57BL Neuroendocrine Cells Osteonectin Prostatic Neoplasms Stromal Cells Transgenes Tumor Microenvironment Down-RegulationDown-RegulationContext (language use)Settore MED/08 - Anatomia PatologicaNeuroendocrine differentiationEpigenesis GeneticProstate cancerMiceStromaDownregulation and upregulationNeuroendocrine CellsCell Line TumormedicineBiomarkers TumorTumor MicroenvironmentSettore MED/05 - Patologia ClinicaAnimalsHumansOsteonectinEpigeneticsTransgenesEndoplasmic Reticulum Chaperone BiPbusiness.industryMatricellular proteinProstatic NeoplasmsCell Differentiationmedicine.diseaseCoculture TechniquesGene Expression Regulation NeoplasticMice Inbred C57BLOncologyCancer researchStromal CellsbusinessCancer research
researchProduct