0000000000476745

AUTHOR

M.l. Andrieux

Hadron energy reconstruction for the ATLAS calorimetry in the framework of the non-parametrical method

This paper discusses hadron energy reconstruction for the ATLAS barrel prototype combined calorimeter (consisting of a lead-liquid argon electromagnetic part and an iron-scintillator hadronic part) in the framework of the non-parametrical method. The non-parametrical method utilizes only the known $e/h$ ratios and the electron calibration constants and does not require the determination of any parameters by a minimization technique. Thus, this technique lends itself to an easy use in a first level trigger. The reconstructed mean values of the hadron energies are within $\pm 1%$ of the true values and the fractional energy resolution is $[(58\pm3)% /\sqrt{E}+(2.5\pm0.3)%]\oplus (1.7\pm0.2)/E…

research product

Search for Diphoton Events with Large Missing Transverse Energy with 36 pb^-1 of 7 TeV Proton-Proton Collision Data with the ATLAS Detector

Making use of 36 pb^-1 of proton-proton collision data at sqrt{s} = 7 TeV, the ATLAS Collaboration has performed a search for diphoton events with large missing transverse energy. Observing no excess of events above the Standard Model prediction, a 95% Confidence Level (CL) upper limit is set on the cross section for new physics of sigma < 0.38 - 0.65 pb in the context of a generalised model of gauge mediated supersymmetry breaking (GGM) with a bino-like lightest neutralino, and of sigma < 0.18 - 0.23 pb in the context of a specific model with one universal extra dimension (UED). A 95 % CL lower limit of 560 GeV, for bino masses above 50 GeV, is set on the GGM gluino mass, while a low…

research product