0000000000476877

AUTHOR

D. Sauvage

Evaluation of the local hadronic calibration with combined beam-test data for the endcap and forward calorimeters of ATLAS in the pseudorapidity region

Abstract The local hadronic calibration scheme developed for the reconstruction and calibration of jets and missing transverse energy in ATLAS has been evaluated using data obtained during combined beam tests of modules of the ATLAS liquid argon endcap and forward calorimeters. These tests covered the pseudorapidity range of 2.5 | η | 4.0 . The analysis has been performed using special sets of calibration weights and corrections obtained with the G eant 4 simulation of a detailed beam-test setup. The evaluation itself has been performed through the careful study of specific calorimeter performance parameters such as e.g. energy response and resolution, shower shapes, as well as different ph…

research product

Performance of the ATLAS liquid argon endcap calorimeter in the pseudorapidity region in beam tests

Abstract The pseudorapidity region 2.5 | η | 4.0 in ATLAS is a particularly complex transition zone between the endcap and forward calorimeters. A set-up consisting of 1 4 resp. 1 8 of the full azimuthal acceptance of the ATLAS liquid argon endcap and forward calorimeters has been exposed to beams of electrons, pions and muons in the energy range E ⩽ 200 GeV at the CERN SPS. Data have been taken in the endcap and forward calorimeter regions as well as in the transition region. This beam test set-up corresponds very closely to the geometry and support structures in ATLAS. A detailed study of the performance in the endcap and forward calorimeter regions is described. The data are compared wit…

research product

Hadronic calibration of the ATLAS liquid argon end-cap calorimeter in the pseudorapidity region in beam tests

Abstract A full azimuthal φ -wedge of the ATLAS liquid argon end-cap calorimeter has been exposed to beams of electrons, muons and pions in the energy range 6 GeV ⩽ E ⩽ 200 GeV at the CERN SPS. The angular region studied corresponds to the ATLAS impact position around the pseudorapidity interval 1.6 | η | 1.8 . The beam test setup is described. A detailed study of the performance is given as well as the related intercalibration constants obtained. Following the ATLAS hadronic calibration proposal, a first study of the hadron calibration using a weighting ansatz is presented. The results are compared to predictions from Monte Carlo simulations, based on GEANT 3 and GEANT 4 models.

research product

Hadron energy reconstruction for the ATLAS calorimetry in the framework of the non-parametrical method

This paper discusses hadron energy reconstruction for the ATLAS barrel prototype combined calorimeter (consisting of a lead-liquid argon electromagnetic part and an iron-scintillator hadronic part) in the framework of the non-parametrical method. The non-parametrical method utilizes only the known $e/h$ ratios and the electron calibration constants and does not require the determination of any parameters by a minimization technique. Thus, this technique lends itself to an easy use in a first level trigger. The reconstructed mean values of the hadron energies are within $\pm 1%$ of the true values and the fractional energy resolution is $[(58\pm3)% /\sqrt{E}+(2.5\pm0.3)%]\oplus (1.7\pm0.2)/E…

research product

Construction, assembly and tests of the ATLAS electromagnetic barrel calorimeter

The construction and assembly of the two half barrels of the ATLAS central electromagnetic calorimeter and their insertion into the barrel cryostat are described. The results of the qualification tests of the calorimeter before installation in the LHC ATLAS pit are given.

research product