0000000000476889

AUTHOR

R. Snopkov

Performance of the ATLAS liquid argon endcap calorimeter in the pseudorapidity region in beam tests

Abstract The pseudorapidity region 2.5 | η | 4.0 in ATLAS is a particularly complex transition zone between the endcap and forward calorimeters. A set-up consisting of 1 4 resp. 1 8 of the full azimuthal acceptance of the ATLAS liquid argon endcap and forward calorimeters has been exposed to beams of electrons, pions and muons in the energy range E ⩽ 200 GeV at the CERN SPS. Data have been taken in the endcap and forward calorimeter regions as well as in the transition region. This beam test set-up corresponds very closely to the geometry and support structures in ATLAS. A detailed study of the performance in the endcap and forward calorimeter regions is described. The data are compared wit…

research product

Hadronic calibration of the ATLAS liquid argon end-cap calorimeter in the pseudorapidity region in beam tests

Abstract A full azimuthal φ -wedge of the ATLAS liquid argon end-cap calorimeter has been exposed to beams of electrons, muons and pions in the energy range 6 GeV ⩽ E ⩽ 200 GeV at the CERN SPS. The angular region studied corresponds to the ATLAS impact position around the pseudorapidity interval 1.6 | η | 1.8 . The beam test setup is described. A detailed study of the performance is given as well as the related intercalibration constants obtained. Following the ATLAS hadronic calibration proposal, a first study of the hadron calibration using a weighting ansatz is presented. The results are compared to predictions from Monte Carlo simulations, based on GEANT 3 and GEANT 4 models.

research product

Hadron energy reconstruction for the ATLAS calorimetry in the framework of the non-parametrical method

This paper discusses hadron energy reconstruction for the ATLAS barrel prototype combined calorimeter (consisting of a lead-liquid argon electromagnetic part and an iron-scintillator hadronic part) in the framework of the non-parametrical method. The non-parametrical method utilizes only the known $e/h$ ratios and the electron calibration constants and does not require the determination of any parameters by a minimization technique. Thus, this technique lends itself to an easy use in a first level trigger. The reconstructed mean values of the hadron energies are within $\pm 1%$ of the true values and the fractional energy resolution is $[(58\pm3)% /\sqrt{E}+(2.5\pm0.3)%]\oplus (1.7\pm0.2)/E…

research product

Liquid argon calorimeter performance at high rates

Abstract We project the performance of the ATLAS liquid argon endcap and forward calorimeters at the planned high luminosity LHC option HL-LHC by exposing small calorimeter modules of the electromagnetic, hadronic, and forward calorimeters to high intensity beams at IHEP/Protvino. The beam intensity extends well beyond the maximum expected for these calorimeters at HL-LHC. The signal reconstruction and calorimeter performance have been studied in full detail.

research product