0000000000476910
AUTHOR
M. Turcotte
Hadron energy reconstruction for the ATLAS calorimetry in the framework of the non-parametrical method
This paper discusses hadron energy reconstruction for the ATLAS barrel prototype combined calorimeter (consisting of a lead-liquid argon electromagnetic part and an iron-scintillator hadronic part) in the framework of the non-parametrical method. The non-parametrical method utilizes only the known $e/h$ ratios and the electron calibration constants and does not require the determination of any parameters by a minimization technique. Thus, this technique lends itself to an easy use in a first level trigger. The reconstructed mean values of the hadron energies are within $\pm 1%$ of the true values and the fractional energy resolution is $[(58\pm3)% /\sqrt{E}+(2.5\pm0.3)%]\oplus (1.7\pm0.2)/E…
Direct measurement of the W boson width
We present a direct measurement of the width of the W boson using the shape of the transverse mass distribution of W->enu candidates selected in 1 fb-1 of data collected with the D0 detector at the Fermilab Tevatron collider in ppbar collisions at sqrt{s}=1.96 TeV. We use the same methods and data sample that were used for our recently published W boson mass measurement, except for the modeling of the recoil, which is done with a new method based on a recoil library. Our result, 2.028 +- 0.072 GeV, is in agreement with the predictions of the standard model.