0000000000477476

AUTHOR

K. Petridis

showing 43 related works from this author

Model-Independent Evidence forJ/ψpContributions toΛb0→J/ψpK−Decays

2016

The data sample of Lambda(0)(b) -> J/psi pK(-) decays acquired with the LHCb detector from 7 and 8 TeV pp collisions, corresponding to an integrated luminosity of 3 fb(-1), is inspected for the presence of J/psi p or J/psi K- contributions with minimal assumptions about K(-)p contributions. It is demonstrated at more than nine standard deviations that Lambda(0)(b) -> J/psi pK(-) decays cannot be described with K- p contributions alone, and that J/psi K- contributions play a dominant role in this incompatibility. These model-independent results support the previously obtained model-dependent evidence for P-c(+)-> J/psi p charmonium-pentaquark states in the same data sample.

PhysicsLuminosity (scattering theory)010308 nuclear & particles physicsQuark modelGeneral Physics and AstronomyLambda01 natural sciencesPentaquarkNuclear physicsBaryon13. Climate action0103 physical sciencesHigh Energy Physics::Experiment010306 general physicsPhysical Review Letters
researchProduct

Measurement of the Top Quark Mass Using the Matrix Element Technique in Dilepton Final States

2016

We present a measurement of the top quark mass in ppbar collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron collider. The data were collected by the D0 experiment corresponding to an integrated luminosity of 9.7 fb-1. The matrix element technique is applied to ttbar events in the final state containing leptons (electrons or muons) with high transverse momenta and at least two jets. The calibration of the jet energy scale determined in the lepton + jets final state of ttbar decays is applied to jet energies. This correction provides a substantial reduction in systematic uncertainties. We obtain a top quark mass of mt = 173.93 +- 1.84 GeV.

Particle physicsTop quarkCOLLISIONSPAIR PRODUCTIONJET IDENTIFICATIONAstrophysics::High Energy Astrophysical PhenomenaTevatronFOS: Physical sciencesJet (particle physics)Astronomy & Astrophysics01 natural sciencesD0 EXPERIMENTlaw.inventionPhysics Particles & FieldsHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)0202 Atomic Molecular Nuclear Particle And Plasma Physicslaw0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]HADRON COLLIDERSFermilabHigh Energy Physics010306 general physicsColliderRUN-IIDETECTOR0206 Quantum PhysicsPhysicsScience & Technology010308 nuclear & particles physicsPhysicsSEMILEPTONIC DECAYSHigh Energy Physics::PhenomenologyD0 experimentNuclear & Particles Physics0201 Astronomical And Space SciencesPair productionPhysical SciencesExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGHigh Energy Physics::ExperimentCROSS-SECTIONLepton
researchProduct

Precision measurement of the ratio of the Λb0 to B¯0 lifetimes

2014

The LHCb measurement of the lifetime ratio of the Lambda(0)(b) baryon to the (B) over bar (0) meson is updated using data corresponding to an integrated luminosity of 3.0 fb(-1) collected using 7 and 8 TeV centre-of-mass energy pp collisions at the LHC. The decay modes used are Lambda(0)(b) -> J/psi pK(-) and (B) over bar (0) -> J/psi pi K-+(-), where the pi K-+(-) mass is consistent with that of the (K) over bar*(0)(892) meson. The lifetime ratio is determined with unprecedented precision to be 0.974 +/- 0.006 +/- 0.004, where the first uncertainty is statistical and the second systematic. This result is in agreement with original theoretical predictions based on the heavy quark expansion.…

QuarkQuantum chromodynamicsPhysicsNuclear and High Energy PhysicsParticle physicsLarge Hadron ColliderMeson010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyLambda01 natural sciencesNuclear physicsBaryonLattice (order)0103 physical sciencesHigh Energy Physics::Experiment010306 general physicsPhysics Letters B
researchProduct

Electron and Photon Identification in the D0 Experiment

2013

The electron and photon reconstruction and identification algorithms used by the D0 Collaboration at the Fermilab Tevatron collider are described. The determination of the electron energy scale and resolution is presented. Studies of the performance of the electron and photon reconstruction and identification are summarized.

Nuclear and High Energy PhysicsPhotonMonte Carlo methodTevatronFOS: Physical sciencesElectron01 natural sciencesHigh Energy Physics - Experimentlaw.inventionNuclear physicsHigh Energy Physics - Experiment (hep-ex)law0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Fermilab010306 general physicsColliderInstrumentationPhysics010308 nuclear & particles physicsResolution (electron density)D0 experiment3. Good healthExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGPhysics::Accelerator PhysicsHigh Energy Physics::Experiment
researchProduct

Precision measurement of the top-quark mass inlepton+jetsfinal states

2015

We measure the mass of the top quark in lepton + jets final states using the full sample of p (p) over bar collision data collected by the D0 experiment in Run II of the Fermilab Tevatron Collider at root s = 1.96 TeV, corresponding to 9.7 fb(-1) of integrated luminosity. We use a matrix element technique that calculates the probabilities for each event to result from t (t) over bar production or background. The overall jet energy scale is constrained in situ by the mass of the W boson. We measure m(t) = 174.98 +/- 0.76 GeV. This constitutes the most precise single measurement of the top-quark mass.

PhysicsNuclear and High Energy PhysicsTop quarkParticle physics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyTevatronD0 experimentJet (particle physics)01 natural sciences7. Clean energylaw.inventionNuclear physicsPair productionlaw0103 physical sciencesHigh Energy Physics::ExperimentFermilab010306 general physicsColliderLeptonPhysical Review D
researchProduct

Observation of charmonium pairs produced exclusively in $pp$ collisions

2014

A search is performed for the central exclusive production of pairs of charmonia produced in proton-proton collisions. Using data corresponding to an integrated luminosity of $3{\rm\ fb}^{-1}$ collected at centre-of-mass energies of 7 and 8 TeV, $J/\psi J/\psi$ and $J/\psi\psi(2S)$ pairs are observed, which have been produced in the absence of any other activity inside the LHCb acceptance that is sensitive to charged particles in the pseudorapidity ranges $(-3.5,-1.5)$ and $(1.5,5.0)$. Searches are also performed for pairs of P-wave charmonia and limits are set on their production. The cross-sections for these processes, where the dimeson system has a rapidity between 2.0 and 4.5, are measu…

Nuclear and High Energy PhysicsParticle physicsNuclear TheorydiffractionFOS: Physical sciencesLHCb - Abteilung HofmannHEAVY-ION COLLISIONSQCD diffraction charmoniaNOHigh Energy Physics - ExperimentLuminosityHigh Energy Physics - Experiment (hep-ex)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Quantum chromodynamiccharmonia; diffraction; QCDcharmonia; diffraction; QCD; Nuclear and High Energy PhysicsRapiditySDG 7 - Affordable and Clean EnergyNuclear ExperimentQCPhysics/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energyhep-ex12.38.-tParticle physicsHadron-induced high- and super-high-energy interactions (energy > 10 GeV): Inclusive production with identified hadronHEAVY-ION COLLISIONS; 450 GEV/C; DIFFRACTION; LHCQCDCromodinàmica quànticaLHCbDifracció450 GEV/CPseudorapidityPhysics::Accelerator PhysicscharmoniaFísica nuclearHigh Energy Physics::ExperimentProduction (computer science)LHCHEAVYFísica de partículesExperiments13.85.NiDiffractionQuantum chromodynamicsParticle Physics - ExperimentJournal of Physics G: Nuclear and Particle Physics
researchProduct

First observation of the rareB+→D+K+π−decay

2016

The B+→D+K+π- decay is observed in a data sample corresponding to 3.0 fb-1 of pp collision data recorded by the LHCb experiment during 2011 and 2012. The signal significance is 8σ and the branching fraction is measured to be B(B+→D+K+π-)=(5.31±0.90±0.48±0.35)×10-6, where the uncertainties are statistical, systematic and due to the normalization mode B+→D-K+π+, respectively. The Dalitz plot appears to be dominated by broad structures. Angular distributions are exploited to search for quasi-two-body contributions from B+→D2∗(2460)0K+ and B+→D+K∗(892)0 decays. No significant signals are observed and upper limits are set on their branching fractions.

PhysicsAngular distribution010308 nuclear & particles physicsBranching fraction0103 physical sciencesDalitz plotCP violationAtomic physics010306 general physics01 natural sciencesPhysical Review D
researchProduct

Measurement of CP asymmetry in D 0 → K - K + and D 0 → π - πdecays

2014

Time-integrated $CP$ asymmetries in $D^0$ decays to the final states $K^- K^+$ and $\pi^- \pi^+$ are measured using proton-proton collisions corresponding to $3\mathrm{\,fb}^{-1}$ of integrated luminosity collected at centre-of-mass energies of $7\mathrm{\,Te\kern -0.1em V}$ and $8\mathrm{\,Te\kern -0.1em V}$. The $D^0$ mesons are produced in semileptonic $b$-hadron decays, where the charge of the accompanying muon is used to determine the initial flavour of the charm meson. The difference in $CP$ asymmetries between the two final states is measured to be \begin{align} \Delta A_{CP} = A_{CP}(K^-K^+)-A_{CP}(\pi^-\pi^+) = (+0.14 \pm 0.16\mathrm{\,(stat)} \pm 0.08\mathrm{\,(syst)})\% \ . \nonu…

High Energy Physics::Lattice14.40.Lb01 natural sciencesLuminositySettore FIS/04 - Fisica Nucleare e SubnucleareFlavor physicsABSORPTIONPhysics::Chemical PhysicsNuclear ExperimentQCmedia_commonCharm physicsPhysicsHadronic decays of charmed mesonCharm physics; CP violation; Flavor physics; Hadron-Hadron ScatteringParticle physicsHadron-induced high- and super-high-energy interactions (energy > 10 GeV): Inclusive production with identified hadronCharge conjugation parity time reversal and other discrete symmetrieFIS/01 - FISICA SPERIMENTALECP violation13.25.FtSCATTERING-AMPLITUDEFísica nuclearLHCParticle physicsCharm physicNuclear and High Energy PhysicsMesonmedia_common.quotation_subjectLHCb - Abteilung HofmannHadronsAsymmetryREGENERATIONTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITYSEARCH0103 physical sciencesPiSCATTERINGSCATTERING-AMPLITUDE; REGENERATION; ABSORPTION; SEARCHSDG 7 - Affordable and Clean Energy010306 general physicsLarge Hadron Collider (France and Switzerland)/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energyMuonHadron-Hadron Scattering010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyGran Col·lisionador d'HadronsCharge (physics)LHCbFlavor physic11.30.ErHigh Energy Physics::ExperimentFísica de partículesExperiments13.85.NiCharmed mesons (|C|>0 B=0)FIS/04 - FISICA NUCLEARE E SUBNUCLEARE
researchProduct

Evidence for Zc±(3900) in semi-inclusive decays of b -flavored hadrons

2018

We present evidence for the exotic charged charmoniumlike state Zc±(3900) decaying to J/ψπ± in semi-inclusive weak decays of b-flavored hadrons. The signal is correlated with a parent J/ψπ+π- system in the invariant-mass range 4.2-4.7 GeV that would include the exotic structure Y(4260). The study is based on 10.4 fb-1 of pp collision data collected by the D0 experiment at the Fermilab Tevatron collider. © 2018 authors. Published by the American Physical Society.

PhysicsParticle physics010308 nuclear & particles physicsHadronTevatronD0 experiment01 natural scienceslaw.inventionlaw0103 physical sciencesHigh Energy Physics::ExperimentStatistical analysisFermilab010306 general physicsColliderPhysical Review D
researchProduct

Improved $b$ quark jet identification at the D0 experiment

2013

The ability to identify jets which originated from $b$ quarks is an important tool of the physics program of the D0 experiment at the Fermilab Tevatron $p\bar{p}$ collider. This article describes a new algorithm designed to select jets originating from $b$ quarks while suppressing the contamination caused by jets from other quark flavors and gluons. Additionally, a new technique, the SystemN method, for determining the misidentification rate directly from data is presented.

QuarkNuclear and High Energy PhysicsParticle physicsHigh Energy Physics::LatticeNuclear TheoryTevatronFOS: Physical sciencesJet (particle physics)01 natural sciencesBottom quarkHigh Energy Physics - Experimentlaw.inventionNuclear physicsHigh Energy Physics - Experiment (hep-ex)law0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Fermilab010306 general physicsColliderInstrumentationPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyD0 experimentGluonExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGHigh Energy Physics::Experiment
researchProduct

Precision Measurement of the Top Quark Mass in <span class="aps-inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" display="in…

2014

We measure the mass of the top quark in lepton$+$jets final states using the full sample of $$p\bar{p}$$ collision data collected by the D0 experiment in Run II of the Fermilab Tevatron Collider at $$\sqrt s=1.96 $$TeV, corresponding to $$9.7 {\rm fb}^{-1}$$ of integrated luminosity. We use a matrix element technique that calculates the probabilities for each event to result from $$t\bar t$$ production or background. The overall jet energy scale is constrained in situ by the mass of the $W$ boson. We measure $$m_t=174.98\pm0.76$$ GeV. In conclusion, this constitutes the most precise single measurement of the top-quark mass.

PhysicsTop quarkParticle physicsAstrophysics::High Energy Astrophysical PhenomenaHigh Energy Physics::PhenomenologyTevatronGeneral Physics and AstronomyD0 experiment7. Clean energylaw.inventionNuclear physicslawHigh Energy Physics::ExperimentProduction (computer science)FermilabColliderBosonLeptonPhysical Review Letters
researchProduct

Combination of D0 measurements of the top quark mass

2017

We present a combination of measurements of the top quark mass by the D0 experiment in the lepton+jets and dilepton channels. We use all the data collected in Run I (1992--1996) at $\sqrt s=1.8$ TeV and Run II (2001--2011) at $\sqrt s=1.96$ TeV of the Tevatron $p \bar{p}$ collider, corresponding to integrated luminosities of 0.1 fb$^{-1}$ and 9.7 fb$^{-1}$, respectively. The combined result is: $m_t = 174.95 \pm0.40\,{\rm(stat)} \pm 0.64\,{\rm(syst)}\,{\rm{GeV}}=174.95 \pm 0.75 \, {\rm{GeV}}$.

Top quarkQ007TPtop: mass: measured((n)jet dilepton) [final state]Tevatronpair production [top]01 natural scienceslaw.inventionPhysics Particles & FieldsHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)lawDZERO[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Batavia TEVATRON CollNuclear ExperimentPhysicsscattering [anti-p p]PhysicsGLOBAL QCD ANALYSISDetectorROOT-S=7ATLASPhysical SciencesComputingMethodologies_DOCUMENTANDTEXTPROCESSINGmass: measured [top]top: pair production((n)jet lepton) [final state]Particle physics1800 GeV-cms1960 GeV-cmsAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesfinal state: ((n)jet lepton)Astronomy & Astrophysicsanti-p p: colliding beamsNuclear physicsEVENTS[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]0103 physical sciencesanti-p p: scatteringddc:530Combined resultHigh Energy Physics010306 general physicsColliderDETECTORScience & TechnologyPP COLLISIONS1960 GeV-cms010308 nuclear & particles physicsfinal state: ((n)jet dilepton)hep-exHigh Energy Physics::PhenomenologyD0 experimentDIFFERENCEPARTON DISTRIBUTIONSExperimental High Energy PhysicsPhysics::Accelerator PhysicsTEVHigh Energy Physics::Experiment1800 GeV-cmscolliding beams [anti-p p]Leptonexperimental results
researchProduct

Measurement of the Effective Weak Mixing Angle in pp¯→Z/γ*→ℓ+ℓ− Events

2018

We present a measurement of the effective weak mixing angle parameter sin(2)theta(l)(eff) in p (p) over bar -> Z/gamma* -> mu(+)mu(-) events at a center-of-mass energy of 1.96 TeV, collected by the D0 detector at the Fermilab Tevatron Collider and corresponding to 8.6 fb(-1) of integrated luminosity. The measured value of sin(2)theta(l)(eff)[mu mu] = 0.23016 +/- 0.00064 is further combined with the result from the D0 measurement in p (p) over bar -> Z/gamma* -> e(+)e(-) events, resulting in sin(2)theta(l)(eff)[comb] = 0.23095 +/- 0.00040. This combined result is the most precise measurement from a single experiment at a hadron collider and is the most precise determination using the couplin…

QuarkPhysicsLuminosity (scattering theory)Large Hadron Collider010308 nuclear & particles physicsTevatronGeneral Physics and Astronomy01 natural sciences7. Clean energylaw.inventionNuclear physicslaw0103 physical sciencesHigh Energy Physics::ExperimentFermilab010306 general physicsColliderMixing (physics)Bar (unit)Physical Review Letters
researchProduct

Forward-backward asymmetry in top quark-antiquark production

2011

Made available in DSpace on 2022-04-29T02:17:17Z (GMT). No. of bitstreams: 0 Previous issue date: 2011-12-12 We present a measurement of forward-backward asymmetry in top quark-antiquark production in proton-antiproton collisions in the final state containing a lepton and at least four jets. Using a data set corresponding to an integrated luminosity of 5.4fb -1, collected by the D0 experiment at the Fermilab Tevatron Collider, we measure the tt̄ forward-backward asymmetry to be (9.2±3.7)% at the reconstruction level. When corrected for detector acceptance and resolution, the asymmetry is found to be (19.6±6.5)%. We also measure a corrected asymmetry based on the lepton from a top quark deca…

Nuclear and High Energy PhysicsTop quarkParticle physicsmedia_common.quotation_subjectTevatronFOS: Physical sciences01 natural sciences7. Clean energyAsymmetryHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]010306 general physicsNuclear Experimentmedia_commonQuantum chromodynamicsPhysics010308 nuclear & particles physicsGenerator (category theory)High Energy Physics::PhenomenologyGluonProduction (computer science)High Energy Physics::ExperimentLepton
researchProduct

Measurement of the Ratio of Branching FractionsB(B¯0→D*+τ−ν¯τ)/B(B¯0→D*+μ−ν¯μ)

2015

The branching fraction ratio R(D-*) = B((B) over bar (0) -> D-*(+)tau(-)(nu) over bar (tau))/B((B) over bar (0) -> D-*(+)mu(-)(nu) over bar (mu)) is measured using a sample of proton-proton collision data corresponding to 3.0 fb(-1) of integrated luminosity recorded by the LHCb experiment during 2011 and 2012. The tau lepton is identified in the decay mode tau(-) -> mu(-)(nu) over bar (mu)nu(tau). The semitauonic decay is sensitive to contributions from non-standard-model particles that preferentially couple to the third generation of fermions, in particular, Higgs-like charged scalars. A multidimensional fit to kinematic distributions of the candidate (B) over bar (0) decays gives R(D-*) =…

PhysicsParticle physicsLarge Hadron Collider010308 nuclear & particles physicsBranching fractionHigh Energy Physics::PhenomenologyGeneral Physics and AstronomyFermion7. Clean energy01 natural sciencesThird generationNuclear physics0103 physical sciencesHigh Energy Physics::ExperimentLeptoquark010306 general physicsLeptonPhysical Review Letters
researchProduct

Jet energy scale determination in the D0 experiment

2013

The calibration of jet energy measured in the \DZero detector is presented, based on ppbar collisions at a center-of-mass energy of 1.96 TeV at the Fermilab Tevatron collider. Jet energies are measured using a sampling calorimeter composed of uranium and liquid argon as the passive and active media, respectively. This paper describes the energy calibration of jets performed with photon+jet, Z+jet and dijet{} events, with jet transverse momentum pT > 6 GeV and pseudorapidity range |eta| < 3.6. The corrections are measured separately for data and simulation, achieving a precision of 1.4%-1.8% for jets in the central part of the calorimeter and up to 3.5% for the jets with pseudorapidity…

Nuclear and High Energy PhysicsParticle physicsAstrophysics::High Energy Astrophysical PhenomenaTevatronFOS: Physical sciencesParton7. Clean energy01 natural scienceslaw.inventionHigh Energy Physics - ExperimentNuclear physicsHigh Energy Physics - Experiment (hep-ex)law0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Fermilab010306 general physicsColliderNuclear ExperimentInstrumentationPhysicsJet (fluid)Calorimeter (particle physics)010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyGluonPseudorapidityExperimental High Energy PhysicsComputingMethodologies_DOCUMENTANDTEXTPROCESSINGHigh Energy Physics::Experiment
researchProduct

Fast simulation of muons produced at the SHiP experiment using Generative Adversarial Networks

2019

This paper presents a fast approach to simulating muons produced in interactions of the SPS proton beams with the target of the SHiP experiment. The SHiP experiment will be able to search for new long-lived particles produced in a 400~GeV$/c$ SPS proton beam dump and which travel distances between fifty metres and tens of kilometers. The SHiP detector needs to operate under ultra-low background conditions and requires large simulated samples of muon induced background processes. Through the use of Generative Adversarial Networks it is possible to emulate the simulation of the interaction of 400~GeV$/c$ proton beams with the SHiP target, an otherwise computationally intensive process. For th…

TechnologyPhysics - Instrumentation and DetectorsProtonPhysics::Instrumentation and DetectorsComputer sciencebackground: inducedNuclear TheoryDetector modelling and simulations I (interaction of radiation with matter interaction of photons with matter interaction of hadrons with matter etc); Simulation methods and programs01 natural sciences09 EngineeringHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]muon: momentumDetectors and Experimental TechniquesNuclear Experimentphysics.ins-detGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)InstrumentationInstruments & InstrumentationMathematical PhysicsDetector modelling and simulations I (interaction of radiation with matter interaction of photons with matter interaction of hadrons with matter etc)02 Physical Sciencesinteraction of photons with matterInstrumentation and Detectors (physics.ins-det)p: beammuon: productionDetector modelling and simulations INuclear & Particles Physicsinteraction of hadrons with matterParticle Physics - Experimentperformancedata analysis methodDetector modelling and simulations I (interaction of radiation with matterFOS: Physical sciencesAccelerator Physics and Instrumentation0103 physical sciencesnumerical methodsddc:610[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]Aerospace engineering010306 general physicsnumerical calculationsetc)MuonScience & Technologyhep-ex010308 nuclear & particles physicsbusiness.industryNumerical analysisAcceleratorfysik och instrumenteringCERN SPSPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentSimulation methods and programsbusinessGenerative grammar
researchProduct

Measurement of thett¯production cross section inpp¯collisions ats=1.96  TeVusing soft electronb-tagging

2010

The authors present a measurement of the t{bar t} production cross section using events with one charged lepton and jets from p{bar p} collisions at a center-of-mass energy of 1.96 TeV. A b-tagging algorithm based on the probability of displaced tracks coming from the event interaction vertex is applied to identify b quarks from top decay. Using 318 pb{sup -1} of data collected with the CDF II detector, they measure the t{bar t} production cross section in events with at least one restrictive (tight) b-tagged jet and obtain 8.9{sub -1.0}{sup +1.0}(stat.){sub -1.0}{sup +1.1}(syst.) pb. The cross section value assumes a top quark mass of m{sub t} is presented in the paper. This result is cons…

Top quarkCollider physicsHadronTevatronGeneral Physics and AstronomyElementary particleKinematicsElectronJet (particle physics)01 natural sciences7. Clean energyParticle identificationlaw.inventionlawInvariant massFermilabNuclear ExperimentQuantum chromodynamicsPhysicsLarge Hadron ColliderLuminosity (scattering theory)Supersymmetryb-taggingHadronizationTransverse planeProduction (computer science)Collider Detector at FermilabQuarkSemileptonic decayNuclear and High Energy PhysicsParticle physicsBar (music)Astrophysics::High Energy Astrophysical PhenomenaBottom quarkMeasure (mathematics)Standard ModelNuclear physicsCross section (physics)Particle decay0103 physical sciencesCollider010306 general physicsCompact Muon SolenoidMuonBranching fraction010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyMultiplicity (mathematics)FermionVertex (geometry)Pair productionHigh Energy Physics::ExperimentEnergy (signal processing)Bar (unit)LeptonPhysical Review D
researchProduct

Precise measurement of the top quark mass in dilepton decays using optimized neutrino weighting

2016

We measure the top quark mass in dilepton final states of top-antitop events in proton-antiproton collisions at sqrt(s) = 1.96 TeV, using data corresponding to an integrated luminosity of 9.7 fb^-1 at the Fermilab Tevatron Collider. The analysis features a comprehensive optimization of the neutrino weighting method to minimize the statistical uncertainties. We also improve the calibration of jet energies using the calibration determined in top-antitop to lepton+jets events, which reduces the otherwise limiting systematic uncertainty from the jet energy scale. The measured top quark mass is mt = 173.32 +/- 1.36(stat) +/- 0.85(syst) GeV.

Top quarkdependence [flavor]TevatronATLAS DETECTORJet (particle physics)pair production [top]7. Clean energy01 natural sciencesHigh Energy Physics - ExperimentPhysics Particles & FieldsSubatomär fysikHigh Energy Physics - Experiment (hep-ex)DZEROSubatomic Physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]HADRON COLLIDERSBatavia TEVATRON CollFermilabNuclear ExperimentGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)Physicsscattering [anti-p p]Luminosity (scattering theory)PhysicsNuclear & Particles Physicslcsh:QC1-999Physics NuclearPhysical SciencesPOLEflavor [quark]mass: measured [top]Neutrinotop quark mass; dilepton decays; neutrino weightingdata analysis methodParticle physicsNuclear and High Energy PhysicsAstrophysics::High Energy Astrophysical PhenomenaSTANDARD MODELFOS: Physical sciencesAstronomy & AstrophysicsAccelerator Physics and Instrumentation530Standard ModelNuclear physics0202 Atomic Molecular Nuclear Particle And Plasma Physicsfinal state [dilepton]0103 physical sciencesMODEL HIGGS-BOSONddc:530High Energy Physics010306 general physics1960 GeV-cmsScience & TechnologyPP COLLISIONSIDENTIFICATION010308 nuclear & particles physicsDATA processing & computer scienceHigh Energy Physics::PhenomenologyAcceleratorfysik och instrumenteringenergy [jet]PRODUCTION CROSS-SECTION(MS)OVER-BAR MASSEScalibration [jet]Experimental High Energy PhysicsPhysics::Accelerator PhysicsTEVHigh Energy Physics::Experimentddc:004statisticalcolliding beams [anti-p p]lcsh:Physicsexperimental resultsLepton
researchProduct

Measurement of the c0 Baryon Lifetime

2018

We report a measurement of the lifetime of the $��_c^0$ baryon using proton-proton collision data at center-of-mass energies of 7 and 8~TeV, corresponding to an integrated luminosity of 3.0 fb$^{-1}$ collected by the LHCb experiment. The sample consists of about 1000 $��_b^-\to��_c^0��^-\bar��_�� X$ signal decays, where the $��_c^0$ baryon is detected in the $pK^-K^-��^+$ final state and $X$ represents possible additional undetected particles in the decay. The $��_c^0$ lifetime is measured to be $��_{��_c^0} = 268\pm24\pm10\pm2$ fs, where the uncertainties are statistical, systematic, and from the uncertainty in the $D^+$ lifetime, respectively. This value is nearly four times larger than, …

Particles and fieldGeneral PhysicsMesonGeneral Physics and AstronomyFOS: Physical sciences01 natural sciences7. Clean energyOmega09 EngineeringNOLuminosityHigh Energy Physics - Experiment (hep-ex)Physics and Astronomy (all)0103 physical sciencesPhysicHeavy baryonTOOLSDG 7 - Affordable and Clean EnergyLHCb - Abteilung Hinton010306 general physicsINCLUSIVE WEAK DECAYS; DISCARDING 1/N(C); RULE; TOOL01 Mathematical SciencesQuantum chromodynamicsPhysics/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energy02 Physical Sciences010308 nuclear & particles physicsQuark modelParticle physicsState (functional analysis)HEPDISCARDING 1/N(C)BaryonLHCbHadron colliderHigh Energy Physics::ExperimentINCLUSIVE WEAK DECAYSLHCAtomic physicsFísica de partículesExperimentsRULECharm physics Oscillation Flavor physics Hadron-Hadron scattering
researchProduct

Search for Violation ofCPTand Lorentz Invariance inBs0Meson Oscillations

2015

We present the first search for CPT-violating effects in the mixing of B-s(0) mesons using the full Run II data set with an integrated luminosity of 10.4 fb(-1) of proton-antiproton collisions coll ...

PhysicsParticle physicsLuminosity (scattering theory)Meson010308 nuclear & particles physicsmedia_common.quotation_subjectHigh Energy Physics::PhenomenologyGeneral Physics and AstronomyLorentz covariance01 natural sciencesAsymmetryTheoretical physics0103 physical sciencesHigh Energy Physics::ExperimentNuclear Experiment010306 general physicsMixing (physics)media_commonPhysical Review Letters
researchProduct

Tevatron Run II combination of the effective leptonic electroweak mixing angle

2018

The Ministry of Science and Innovation and the Consolider-Ingenio 2010 Program and the European Union community Marie Curie Fellowship Contract No. 302103.

Drell-Yan processsemianalytical programsPhysics and Astronomy (miscellaneous)FERMION PAIR PRODUCTIONUPGRADETevatronhadron-colliders01 natural sciencesHigh Energy Physics - ExperimentPhysics Particles & Fieldselectron: pair productionHigh Energy Physics - Experiment (hep-ex)MONTE-CARLOUNIVERSAL MONTE-CARLOELECTROMAGNETIC CALORIMETERDZERO[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]HADRON COLLIDERSangular distributionBatavia TEVATRON CollMonte CarloPhysicsscattering [anti-p p]gauge bosonPhysicsElectroweak interactionDrell–Yan processWeinberg anglespontaneous symmetry breaking [electroweak interaction]muon: pair productionPhysical Sciencesmixing angle [electroweak interaction]bosonPHOTOSmass: measured [W]asymmetryParticle physicsFOS: Physical sciencesSEMIANALYTICAL PROGRAMddc:500.2Astronomy & Astrophysicselectroweak interaction: spontaneous symmetry breaking114 Physical sciences530programmingW: mass: measuredStandard Modelanti-p p: colliding beams[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]hadroproduction [Z0]0103 physical sciencesanti-p p: scatteringddc:530High Energy Physicspair production [electron]pair production [muon]CALORIMETER010306 general physicsQED RADIATIVE-CORRECTIONSQed radiative-corrections; fermion pair production; universal; Monte Carlo; parton distributions; hadron-colliders; electromagnetic; calorimeter;semianalytical programs; E(+)E(-) annihilation; boson; production; D0 detectorGauge bosonBOSON PRODUCTIONMuonScience & Technologyelectroweak interaction: mixing angleAnti-p p: scattering | anti-p p: colliding beams | Z0: hadroproduction | Z0: leptonic decay | electroweak interaction: spontaneous symmetry breaking | electroweak interaction: mixing angle | muon: pair production | W: mass: measured | Weinberg angle | Batavia TEVATRON Coll | angular distribution | electron: pair production | Drell-Yan process | gauge boson | programming | asymmetry | CDF | DZERO | experimental resultsIDENTIFICATION010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyuniversalWeinberg angleZ0: hadroproductionQED RADIATIVE-CORRECTIONS; FERMION PAIR PRODUCTION; UNIVERSAL; MONTE-CARLO; PARTON DISTRIBUTIONS; HADRON COLLIDERS; ELECTROMAGNETIC; CALORIMETER; SEMIANALYTICAL PROGRAM; E(+)E(-) ANNIHILATION; BOSON; PRODUCTION; D0 DETECTORleptonic decay [Z0]E(+)E(-) ANNIHILATIONelectromagneticPARTON DISTRIBUTIONSExperimental High Energy PhysicsZ0: leptonic decayD0 DETECTORCDFHigh Energy Physics::Experimentproductioncolliding beams [anti-p p]Leptonexperimental results
researchProduct

Physics beyond colliders at CERN: beyond the Standard Model working group report

2019

The Physics Beyond Colliders initiative is an exploratory study aimed at exploiting the full scientific potential of the CERN's accelerator complex and scientific infrastructures through projects complementary to the LHC and other possible future colliders. These projects will target fundamental physics questions in modern particle physics. This document presents the status of the proposals presented in the framework of the Beyond Standard Model physics working group, and explore their physics reach and the impact that CERN could have in the next 10–20 years on the international landscape.

HIGH-ENERGYHigh energyaxionsPhysics - Instrumentation and DetectorsPhysics::Instrumentation and DetectorsPhysics beyond the Standard Model01 natural sciencesHigh Energy Physics - Experimentdark matter: couplingHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)photon: coupling[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Detectors and Experimental Techniquesphysics.ins-detPHOTON VETO DETECTORdark sectorPhysicsLarge Hadron Colliderneutrino: pair productionnew physics: search forlepton: flavor: violationdark matter: pair productionhep-phInstrumentation and Detectors (physics.ins-det)photon: invisible decayNEUTRAL HEAVY-LEPTONSHigh Energy Physics - PhenomenologyLIGHTCERN LHC Collphoton: mixingSystems engineeringParticle Physics - ExperimentNuclear and High Energy PhysicsCERN LabacceleratorPHI-MESON DECAYSExploratory researchFOS: Physical sciences530dark matterStandard ModelELECTRIC-DIPOLE MOMENTacceleratorsVECTOR GAUGE BOSONSEARCH0103 physical sciencesDARK-MATTERddc:530K: semileptonic decay[PHYS.PHYS.PHYS-INS-DET]Physics [physics]/Physics [physics]/Instrumentation and Detectors [physics.ins-det]particle physics010306 general physicsvector boson: postulated particleCP CONSERVATIONbeyond standard ModelParticle Physics - Phenomenologylepton: universalityphoton: hidden sectorbeyond standard Model; dark matter; dark sector; axions; particle physics; acceleratorshep-ex010308 nuclear & particles physicscoupling constantCERN SPSlandscapeAccelerators and Storage Ringsdark matter: mediation[PHYS.HPHE]Physics [physics]/High Energy Physics - Phenomenology [hep-ph]Fundamental physicsPhysics::Accelerator Physicsaxion: solarJournal of Physics G: Nuclear and Particle Physics
researchProduct

Measurement of spin correlation between top and antitop quarks produced in pp¯ collisions at s=1.96 TeV

2016

Department of Energy (United States of America); National Science Foundation (United States of America); Alternative Energies and Atomic Energy Commission (France); National Center for Scientific Research/ National Institute of Nuclear and Particle Physics (France); Ministry of Education and Science of the Russian Federation (Russia); National Research Center "Kurchatov Institute" of the Russian Federation (Russia); Russian Foundation for Basic Research (Russia); National Council for the Development of Science and Technology (Brazil); Carlos Chagas Filho Foundation for the Support of Research in the State of Rio de Janeiro (Brazil); Department of Atomic Energy (India); Department of Science…

PhysicsNuclear and High Energy Physics010308 nuclear & particles physicsmedia_common.quotation_subjectAtomic energyLibrary science7. Clean energy01 natural scienceslanguage.human_languageBildungGermanNuclear physicsState (polity)Basic research0103 physical scienceslanguageChristian ministry010306 general physicsChinaResearch centermedia_commonPhysics Letters B
researchProduct

Measurement of the Difference of Time-IntegratedCPAsymmetries inD0→K−K+andD0→π−π+Decays

2016

A search for CP violation in $D^0 \rightarrow K^{-} K^{+} $ and $D^0 \rightarrow \pi^{-} \pi^{+} $ decays is performed using $pp$ collision data, corresponding to an integrated luminosity of $3~fb^{-1}$, collected using the LHCb detector at centre-of-mass energies of 7 and $8~$TeV. The flavour of the charm meson is inferred from the charge of the pion in $D^{*+}\rightarrow D^0\pi^+$ and $D^{*-}\rightarrow \bar{D^0}\pi^{-}$ decays. The difference between the CP asymmetries in $D^0 \rightarrow K^{-} K^{+} $ and $D^0 \rightarrow \pi^{-} \pi^{+} $ decays, $\Delta A_{CP} \equiv A_{CP}(K^{-} K^{+}) - A_{CP}(\pi^{-} \pi^{+})$, is measured to be $\left( -0.10 \pm 0.08(stat) \pm 0.03(syst) \right) \…

PhysicsParticle physicsMeson010308 nuclear & particles physicsmedia_common.quotation_subjectHigh Energy Physics::PhenomenologyGeneral Physics and AstronomyCharge (physics)01 natural sciencesAsymmetryLuminosityNuclear physicsPion0103 physical sciencesCP violationHigh Energy Physics::ExperimentCharm (quantum number)010306 general physicsmedia_commonPhysical Review Letters
researchProduct

Study of the X±(5568) state with semileptonic decays of the Bs0 meson

2018

We present a study of the X±(5568) using semileptonic decays of the Bs0 meson using the full run II integrated luminosity of 10.4  fb-1 in proton-antiproton collisions at a center of mass energy of 1.96 TeV collected with the D0 detector at the Fermilab Tevatron Collider. We report evidence for a narrow structure, X±(5568), in the decay sequence X±(5568)→Bs0π± where Bs0→μ∓Ds±X, Ds±→ϕπ± which is consistent with the previous measurement by the D0 Collaboration in the hadronic decay mode, X±(5568)→Bs0π± where Bs0→J/ψϕ. The mass and width of this state are measured using a combined fit of the hadronic and semileptonic data, yielding m=5566.9-3.1+3.2(stat)-1.2+0.6(syst)  MeV/c2, Γ=18.6-6.1+7.9(s…

PhysicsParticle physicsLuminosity (scattering theory)Meson010308 nuclear & particles physicsHadronTevatronState (functional analysis)01 natural sciences7. Clean energylaw.inventionlaw0103 physical sciencesHigh Energy Physics::ExperimentCenter of massFermilabNuclear Experiment010306 general physicsColliderPhysical Review D
researchProduct

Amplitude analysis ofB−→D+π−π−decays

2016

The Dalitz plot analysis technique is used to study the resonant substructures of $B^{-} \to D^{+} \pi^{-} \pi^{-}$ decays in a data sample corresponding to 3.0 ${\rm fb}^{-1}$ of $pp$ collision data recorded by the LHCb experiment during 2011 and 2012. A model-independent analysis of the angular moments demonstrates the presence of resonances with spins 1, 2 and 3 at high $D^{+}\pi^{-}$ mass. The data are fitted with an amplitude model composed of a quasi-model-independent function to describe the $D^{+}\pi^{-}$ S-wave together with virtual contributions from the $D^{*}(2007)^{0}$ and $B^{*0}$ states, and components corresponding to the $D^{*}_{2}(2460)^{0}$, $D^{*}_{1}(2680)^{0}$, $D^{*}_…

PhysicsParticle physicsFormalism (philosophy of mathematics)AmplitudeSpinsMeson010308 nuclear & particles physicsScattering0103 physical sciencesDalitz plot010306 general physics01 natural sciencesPhysical Review D
researchProduct

Combined Forward-Backward Asymmetry Measurements in Top-Antitop Quark Production at the Tevatron

2018

The CDF and D0 experiments at the Fermilab Tevatron have measured the asymmetry between yields of forward- and backward-produced top and antitop quarks based on their rapidity difference and the asymmetry between their decay leptons. These measurements use the full data sets collected in proton-antiproton collisions at a center-of-mass energy of √s=1.96  TeV. We report the results of combinations of the inclusive asymmetries and their differential dependencies on relevant kinematic quantities. The combined inclusive asymmetry is At¯tFB=0.128±0.025. The combined inclusive and differential asymmetries are consistent with recent standard model predictions.

Top quarkTevatronGeneral Physics and Astronomypair production [top]01 natural sciences7. Clean energyHigh Energy Physics - ExperimentSubatomär fysikHigh Energy Physics - Experiment (hep-ex)DZEROSubatomic Physicsddc:550[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Quantum ChromodynamicsBatavia TEVATRON CollGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)media_commonPhysicsscattering [anti-p p]Particle properties02 Physical Sciencesrapidity: differenceCDF; Tevatron; top-quarkPhysicsdifference [rapidity]asymmetry [angular distribution]kinematicsPhysical Sciencestop: pair productionQuarkParticle physicsGeneral Physicsangular distribution: asymmetryTevatron Collidermedia_common.quotation_subjectPhysics MultidisciplinaryFOS: Physical sciencesForward backwardddc:500.2Hadron-hadron interactionsAsymmetryComputer Science::Digital Libraries114 Physical sciencesMarie curieCDF Collaborationanti-p p: colliding beamsPhysics and Astronomy (all)[ PHYS.HEXP ] Physics [physics]/High Energy Physics - Experiment [hep-ex]0103 physical sciencesanti-p p: scatteringmedia_common.cataloged_instanceddc:530High Energy PhysicsEuropean union010306 general physicsScience & Technology1960 GeV-cms010308 nuclear & particles physicshep-exHigh Energy Physics::PhenomenologyTop quarkQ007TFBResearch councilExperimental High Energy PhysicsCDFHigh Energy Physics::Experimentcolliding beams [anti-p p]High Energy Physics Top quark Hadron-hadron interactions Quantum Chromodynamics Particle properties Tevatron ColliderD0 Collaborationexperimental resultsPhysical Review Letters
researchProduct

Study of J/ψ Production in Jets

2017

The production of $J/\psi$ mesons in jets is studied in the forward region of proton-proton collisions using data collected with the LHCb detector at a center-of-mass energy of 13 TeV. The fraction of the jet transverse momentum carried by the $J/\psi$ meson, $z \equiv p_{\rm T}(J/\psi)/p_{\rm T}({\rm jet})$, is measured using jets with $p_{\rm T}({\rm jet}) > 20$ GeV in the pseudorapidity range $2.5 < \eta({\rm jet}) < 4.0$. The observed $z$ distribution for $J/\psi$ mesons produced in $b$-hadron decays is consistent with expectations. However, the results for prompt $J/\psi$ production do not agree with predictions based on fixed-order non-relativistic QCD. This is the first measurement o…

13000 GeV-cmsQuantum chromodynamics: Experimental testNuclear TheoryGeneral Physics and Astronomy01 natural sciences7. Clean energytransverse momentum [jet]Settore FIS/04 - Fisica Nucleare e SubnucleareHigh Energy Physics - ExperimentParticle production Quantum chromodynamicsddc:550scattering [p p][PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]LHCb - Abteilung HintonParticle productionNuclear ExperimentQuantum chromodynamicsPhysicsJet (fluid)Large Hadron Collider02 Physical SciencesHadron-induced high- and super-high-energy interactions (energy > 10 GeV): Inclusive production with identified hadronParticle physicsQuarkoniumPROMPTJ/psi mesonLeptonic semileptonic and radiative decays of J/ψ Υ and other quarkoniaCERN LHC Collhadroproduction [J/psi(3100)]Pseudorapidityrapidity [jet]root S=7 TEVPhysical SciencesLHCcolliding beams [p p]Particle Physics - ExperimentParticle physicsGeneral PhysicsMesonPSI(2S)Astrophysics::High Energy Astrophysical PhenomenaPhysics Multidisciplinarynonrelativistic [quantum chromodynamics]OCTET QUARKONIA PRODUCTIONNOJets in large-Q2 scatteringNuclear physicsOctet quarkonia production PP collision root S=7 TEV PSI(2S) physics prompt decayPHYSICSPhysics and Astronomy (all)OCTET QUARKONIA PRODUCTION; PP COLLISIONS; ROOT-S=7 TEV; PSI(2S); PHYSICS; PROMPT; DECAY0103 physical sciencesRapiditySDG 7 - Affordable and Clean Energy010306 general physics/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energyScience & TechnologyPP COLLISIONSROOT-S=7 TEV010308 nuclear & particles physicsPP collisionhep-exHigh Energy Physics::PhenomenologyLHC-BHEPLHCbHigh Energy Physics::ExperimentHeavy quarkoniaFísica de partículesExperimentsDECAYQuantum chromodynamicsexperimental results
researchProduct

First study of the CP-violating phase and decay-width difference in Bs0→ψ(2S)ϕ decays

2016

A time-dependent angular analysis of Bs0→ψ(2S)ϕ decays is performed using data recorded by the LHCb experiment. The data set corresponds to an integrated luminosity of 3.0fb−1 collected during Run 1 of the LHC. The CP-violating phase and decay-width difference of the Bs0 system are measured to be ϕs=0.23−0.28+0.29±0.02rad and ΔΓs=0.066−0.044+0.041±0.007ps−1, respectively, where the first uncertainty is statistical and the second systematic. This is the first time that ϕs and ΔΓs have been measured in a decay containing the ψ(2S) resonance.

PhysicsNuclear and High Energy PhysicsParticle physicsLarge Hadron ColliderLuminosity (scattering theory)010308 nuclear & particles physicsPhase (waves)Astrophysics01 natural sciencesResonance (particle physics)Angular distribution0103 physical sciencesCP violation010306 general physicsPhysics Letters B
researchProduct

Evidence for aBs0π±State

2016

Made available in DSpace on 2022-04-28T19:03:57Z (GMT). No. of bitstreams: 0 Previous issue date: 2016-07-07 We report evidence for a narrow structure, X(5568), in the decay sequence X(5568)→Bs0π±, Bs0→J/ψφ, J/ψ→μ+μ-, φ→K+K-. This is evidence for the first instance of a hadronic state with valence quarks of four different flavors. The mass and natural width of this state are measured to be m=5567.8±2.9(stat)-1.9+0.9(syst) MeV/c2 and Γ=21.9±6.4(stat)-2.5+5.0(syst) MeV/c2. If the decay is X(5568)→Bs∗π±→Bs0γπ± with an unseen γ, m(X(5568)) will be shifted up by m(Bs∗)-m(Bs0)∼49 MeV/c2. This measurement is based on 10.4 fb-1 of pp collision data at s=1.96 TeV collected by the D0 experiment at th…

PhysicsHadronic decay010308 nuclear & particles physicsHadronTevatronAnalytical chemistryGeneral Physics and Astronomy7. Clean energy01 natural sciencesNuclear physics0103 physical sciencesPiHigh Energy Physics::ExperimentTetraquarkNuclear Experiment010306 general physicsPhysical Review Letters
researchProduct

First Observation of Top Quark Production in the Forward Region

2015

Top quark production in the forward region in proton-proton collisions is observed for the first time. The W + b final state with W → μν is reconstructed using muons with a transverse momentum, p[subscript T], larger than 25 GeV in the pseudorapidity range 2.0 20  GeV. The results are based on data corresponding to integrated luminosities of 1.0 and 2.0  fb[superscript -1] collected at center-of-mass energies of 7 and 8 TeV by LHCb. The inclusive top quark production cross sections in the fiducial region are σ(top)[7  TeV] = 239 ± 53(stat) ± 33(syst) ± 24(theory)  fb, σ(top)[8  TeV] = 289 ± 43(stat) ± 40(syst) ± 29(theory)  fb.These results, along with the observed differential yields and c…

Top quarkParticle physicsPhysics MultidisciplinaryGeneral Physics and AstronomyFOS: Physical sciences7. Clean energy01 natural sciencesJets in large-Q2 scatteringSettore FIS/04 - Fisica Nucleare e SubnucleareHigh Energy Physics - ExperimentStandard ModelNONuclear physicsPhysics and Astronomy (all)High Energy Physics - Experiment (hep-ex)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]RapiditySDG 7 - Affordable and Clean Energy010306 general physicsNuclear ExperimentPhysicslhcbMuon/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energyScience & Technology010308 nuclear & particles physicsPhysicsSettore FIS/01 - Fisica SperimentaleParticle physicsSigmaCharge (physics)Top quarkHEP14.70.FmPseudorapidity13.87.-aPhysical SciencesW boson14.65.HaProduction (computer science)High Energy Physics::ExperimentLHCFísica de partículesExperimentsDECAYParticle Physics - Experiment
researchProduct

Precision measurement of D meson mass differences

2013

Using three- and four-body decays of D mesons produced in semileptonic b-hadron decays, precision measurements of D meson mass differences are made together with a measurement of the D-0 mass. The measurements are based on a dataset corresponding to an integrated luminosity of 1.0 fb(-1) collected in pp collisions at 7 TeV. Using the decay D-0 -> K+K-K-pi(+), the D-0 mass is measured to be M(D-0) = 1864.75 +/- 0.15 (stat) +/- 0.11 (syst) MeV/c(2). The mass differences M(D+) - M(D-0) = 4.76 +/- 0.12 (stat) +/- 0.07 (syst) MeV/c(2), M(D-s(+)) - M(D+) = 98.68 +/- 0.03 (stat) +/- 0.04 (syst) MeV/c(2) are measured using the D-0 -> K+K-pi(+)pi(-) and D-(s)(+) -> K+K-pi(+) modes.

Hadronic decays of charmed mesonsParticle physicsTeoria quàntica de campsGravitacióNuclear and High Energy PhysicsMesonHigh Energy Physics::LatticeNuclear TheoryFOS: Physical sciencesHadrons01 natural sciencesHadron-induced high- and super-high-energy interactions (energy > 10 GeV): Inclusive production with identified hadrons; Leptonic semileptonic and radiative decays of bottom mesons; Charmed mesons (|C|>0 B=0); Hadronic decays of charmed mesonsPartícules (Física nuclear)Settore FIS/04 - Fisica Nucleare e SubnucleareLuminosityHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)0103 physical sciencesD mesonLeptonic semileptonic and radiative decays of bottom meson[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]TOOLTeoria quàntica010306 general physicsHadron-induced high- and super-high-energy interactions (energy > 10 GeV): Inclusive production with identified hadronsNuclear ExperimentQCHadron-Hadron Scattering; Nuclear and High Energy PhysicsPhysicsHadron-Hadron Scattering010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyHadron-induced high- and super-high-energy interactions (energy > 10 GeV): Inclusive production with identified hadronRelativity (Physics)DecayRelativitat (Física)Quantum field theoryFIS/01 - FISICA SPERIMENTALEQuantum theoryLeptonic semileptonic and radiative decays of bottom mesonsDECAY; TOOLFísica nuclearHigh Energy Physics::ExperimentCharmed mesons (|C|>0 B=0)DECAYParticle Physics - ExperimentGravitationJournal of High Energy Physics
researchProduct

Study of W Boson Production in Association with Beauty and Charm

2015

The associated production of a W boson with a jet originating from either a light parton or heavy-flavor quark is studied in the forward region using proton-proton collisions. The analysis uses data corresponding to integrated luminosities of 1.0 and 2.0  fb[superscript -1] collected with the LHCb detector at center-of-mass energies of 7 and 8 TeV, respectively. The W bosons are reconstructed using the W → μν decay and muons with a transverse momentum, p[subscript T], larger than 20 GeV in the pseudorapidity range 2.0 20  GeV and 2.2 20  GeV. The fraction of W + jet events that originate from beauty and charm quarks is measured, along with the charge asymmetries of the W + b and W + c produ…

PartonATLAS DETECTOR01 natural sciencesPRODUCTION CROSS-SECTIONSHigh Energy Physics - ExperimentPhysics Particles & FieldsSettore FIS/04 - Fisica Nucleare e SubnucleareHigh Energy Physics - Experiment (hep-ex)[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Charm (quantum number)Nuclear ExperimentBosonPhysicsPhysicsParticle physics14.70.FmPseudorapidityPhysical Sciences13.87.-aLHCParticle Physics - ExperimentQuarkNuclear and High Energy PhysicsParticle physicsCOLLISIONSAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesLHCb - Abteilung HofmannHadronsAstronomy & AstrophysicsCharm quarkStandard ModelNOJets in large-Q2 scatteringNuclear physicsRATIO0103 physical sciencesSDG 7 - Affordable and Clean Energy010306 general physicsLarge Hadron Collider (France and Switzerland)MuonScience & Technology/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energyROOT-S=7 TEV010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyGran Col·lisionador d'HadronsHEPLHCbJETSW bosonHigh Energy Physics::ExperimentFísica de partículesExperimentsDECAY
researchProduct

Measurement of the chi(b) (3 P) mass and of the relative rate of chi(b1) (1 P) and chi(b2) (1 P) production

2014

The production of $\chi_b$ mesons in proton-proton collisions is studied using a data sample collected by the LHCb detector, at centre-of-mass energies of $\sqrt{s}=7$ and $8$ TeV and corresponding to an integrated luminosity of 3.0 fb$^{-1}$. The $\chi_b$ mesons are identified through their decays to $\Upsilon(1S)\gamma$ and $\Upsilon(2S)\gamma$ using photons that converted to $e^+e^-$ pairs in the detector. The $\chi_b(3P)$ meson mass, and the relative prompt production rate of $\chi_{b1}(1P)$ and $\chi_{b2}(1P)$ mesons as a function of the $\Upsilon(1S)$ transverse momentum in the $\chi_b$ rapidity range 2.0< $y$<4.5, are measured. Assuming a mass splitting between the $\chi_{b1}(3P)$ an…

Quantum chromodynamics: Experimental testPhysics::Instrumentation and DetectorsNuclear TheoryQuarkoniumFlavor physics; Hadron-Hadron Scattering; Quarkonium01 natural sciencesPhysics Particles & FieldsHigh Energy Physics - ExperimentLuminositySettore FIS/04 - Fisica Nucleare e Subnucleare14.40.PqFlavor physicsDECAY; UPSILON; PSI[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Flavor physics; Hadron-Hadron Scattering; Quarkonium; Nuclear and High Energy PhysicsPSINuclear ExperimentQCPhysicsPhysicsHadron-induced high- and super-high-energy interactions (energy > 10 GeV): Inclusive production with identified hadronParticle physicsLeptonic semileptonic and radiative decays of J/ψ Υ and other quarkoniaQuarkonium Hadron-Hadron Scattering Flavor physicsPhysical SciencesTransverse momentumFísica nuclearProduction (computer science)LHCParticle Physics - ExperimentNuclear and High Energy PhysicsParticle physicsMesonLHCb - Abteilung HofmannAstrophysics::Cosmology and Extragalactic AstrophysicsUPSILONHadronsNO13.20.Gd0103 physical sciencesRapiditySDG 7 - Affordable and Clean Energy010306 general physicsLarge Hadron Collider (France and Switzerland)/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energyScience & TechnologyHadron-Hadron Scattering010308 nuclear & particles physicsGran Col·lisionador d'HadronsLHCb12.38.QkFlavor physicHigh Energy Physics::ExperimentHeavy quarkonia13.85.NiFísica de partículesExperimentsDECAYProduction rate
researchProduct

Measurement of CP asymmetry in Bs0 → Ds ∓K± decays

2014

Journal of high energy physics 2018(3), 59 (2018). doi:10.1007/JHEP03(2018)059

B physicCKM angle gamma01 natural sciencesB physicsLuminosityFlavor physicsHadron-Hadron scattering (experiments)TOOLLHCb - Abteilung HintonQCmedia_commonPhysicsParticle physicsCharge conjugation parity time reversal and other discrete symmetrie12.15.HhB physics; CKM angle gamma; CP violation; Flavor physics; Hadron-Hadron ScatteringJustice and Strong InstitutionsCP violationB physics; CKM angle gamma; CP violation; Flavor physics; Hadron-Hadron Scattering; Nuclear and High Energy PhysicsFísica nuclearLHCAstrophysics::Earth and Planetary AstrophysicsParticle physicsNuclear and High Energy PhysicsVIOLATIONSDG 16 - PeaceVIOLATION; GAMMA; TOOLAstrophysics::High Energy Astrophysical Phenomenamedia_common.quotation_subject14.40.NdLHCb - Abteilung HofmannAstrophysics::Cosmology and Extragalactic AstrophysicsHadrons530Determination of Cabibbo-Kobayashi & Maskawa (CKM) matrix elementAsymmetryNOHadronic decays of bottom mesonTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY0103 physical scienceslcsh:Nuclear and particle physics. Atomic energy. Radioactivityddc:530010306 general physicsLarge Hadron Collider (France and Switzerland)Astrophysics::Galaxy AstrophysicsHadron-Hadron Scattering010308 nuclear & particles physicsSDG 16 - Peace Justice and Strong InstitutionsGran Col·lisionador d'HadronsGAMMA/dk/atira/pure/sustainabledevelopmentgoals/peace_justice_and_strong_institutionsHEPLHCbFlavor physic13.25.HwB physics; CKM angle gamma; CP violation; Flavor physics; Hadron-Hadron scattering (experiments)lcsh:QC770-798Bottom mesons (|B|>0)11.30.ErHigh Energy Physics::ExperimentB physics CKM angle gamma CP violation Flavor physics Hadron-Hadron ScatteringFísica de partículesExperiments
researchProduct

Observation of $Z$ production in proton-lead collisions at LHCb

2014

The first observation of $Z$ boson production in proton-lead collisions at a centre-of-mass energy per proton-nucleon pair of $\sqrt{s_{NN}}=5~\text{TeV}$ is presented. The data sample corresponds to an integrated luminosity of $1.6~\text{nb}^{-1}$ collected with the LHCb detector. The $Z$ candidates are reconstructed from pairs of oppositely charged muons with pseudorapidities between 2.0 and 4.5 and transverse momenta above $20~\text{GeV}/c$. The invariant dimuon mass is restricted to the range $60-120~\text{GeV}/c^2$. The $Z$ production cross-section is measured to be \begin{eqnarray*} ��_{Z\to��^+��^-}(\text{fwd})&amp;=&amp;13.5^{+5.4}_{-4.0}\text{(stat.)}\pm1.2\text{(syst.)}~\text{nb} …

14.70.Hp - Z bosonProtonNuclear Theory01 natural sciencesPhysics Particles & FieldsHigh Energy Physics - ExperimentSettore FIS/04 - Fisica Nucleare e SubnucleareLuminosityHigh Energy Physics - Experiment (hep-ex)Heavy-ion collision[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Electroweak interaction; Forward physics; Heavy Ions; Heavy-ion collision; Particle and resonance productionElectroweak interactionHeavy IonsHeavy IonNuclear ExperimentQCBosonPhysics25.75.Dw - Relativistic heavy-ion collisions: Particle and resonance production; 14.70.Hp - Z bosons; 13.38.Dg - Decays of Z bosons; 12.15.-y - Electroweak interactionsPhysicsHIGH ENERGIES12.15.-y - Electroweak interactionsParticle physicsComputer Science::Computation and Language (Computational Linguistics and Natural Language and Speech Processing)13.38.Dg - Decays of Z bosons25.75.Dw - Relativistic heavy-ion collisions: Particle and resonance productionPhysical SciencesPARTON DISTRIBUTIONS; BOSON PRODUCTION; HIGH ENERGIES; NUCLEAR PDFS; DEUTERIUM; DECAYFísica nuclearProduction (computer science)14.70.Hp - Z bosonsParticle Physics - ExperimentNuclear and High Energy PhysicsParticle physicsNUCLEAR PDFS530 PhysicsDEUTERIUMFOS: Physical sciencesPhysics InstituteLHCb - Abteilung HofmannHadronsParticle and resonance production0103 physical sciencesElectroweak interaction; Forward physics; Heavy Ions; Heavy-ion collision; Particle and resonance production; Nuclear and High Energy PhysicsSDG 7 - Affordable and Clean Energy010306 general physicsForward physicLarge Hadron Collider (France and Switzerland)BOSON PRODUCTION/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energyScience & TechnologyMuon010308 nuclear & particles physicshep-exComputer Science::Information RetrievalGran Col·lisionador d'Hadrons13.38.Dg - Decays of Z bosonPARTON DISTRIBUTIONSForward physicsHigh Energy Physics::ExperimentFísica de partículesExperimentsDECAYEnergy (signal processing)JHEP
researchProduct

Differential branching fractions and isospin asymmetries of B -> K ((*)) μ(+) μ(-) decays

2014

The isospin asymmetries of $B \to K\mu^+\mu^-$ and $B \to K^{*}\mu^+\mu^-$ decays and the partial branching fractions of the $B^0 \to K^0\mu^+\mu^-$, $B^+ \to K^+\mu^+\mu^-$ and $B^+ \to K^{*+}\mu^+\mu^-$ decays are measured as functions of the dimuon mass squared, $q^2$. The data used correspond to an integrated luminosity of 3$~$fb$^{-1}$ from proton-proton collisions collected with the LHCb detector at centre-of-mass energies of 7$\,$TeV and 8$\,$TeV in 2011 and 2012, respectively. The isospin asymmetries are both consistent with the Standard Model expectations. The three measured branching fractions, while individually consistent, all favour lower values than their respective Standard M…

B physic01 natural sciences7. Clean energyB physicsLuminosity/dk/atira/pure/sustainabledevelopmentgoals/clean_water_and_sanitationHigh Energy Physics - ExperimentSettore FIS/04 - Fisica Nucleare e SubnuclearePhysics Particles & Fields[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]11.30.HvNuclear ExperimentQCPhysics02 Physical SciencesB physics; Branching fraction; Flavour Changing Neutral Currents; Hadron-Hadron Scattering; Rare decayPhysicsParticle physicsNuclear & Particles PhysicsFIS/01 - FISICA SPERIMENTALEIsospinPhysical SciencesBranching fractionFísica nuclearLHCSDG 6 - Clean Water and SanitationParticle Physics - ExperimentParticle physicsNuclear and High Energy Physics14.40.NdFlavour Changing Neutral CurrentsLHCb - Abteilung HofmannHadronsBranching (polymer chemistry)Standard Model0103 physical sciencesLeptonic semileptonic and radiative decays of bottom meson010306 general physicsFlavor symmetrieLarge Hadron Collider (France and Switzerland)01 Mathematical SciencesScience & TechnologyFlavour Changing Neutral CurrentHadron-Hadron Scattering010308 nuclear & particles physicshep-exGran Col·lisionador d'HadronsLHCbRare decay13.20.HeBottom mesons (|B|>0)High Energy Physics::ExperimentFísica de partículesExperimentsRare decay; Branching fraction; B physics; Flavour Changing Neutral Currents; Hadron-Hadron ScatteringFIS/04 - FISICA NUCLEARE E SUBNUCLEARE
researchProduct

Differential branching fraction and angular analysis of the decay $B^{0} \to K^{*0} \mu^{+}\mu^{-}$

2013

The angular distribution and differential branching fraction of the decay B-0 -> K*(0)mu(+)mu(-) are studied using a data sample, collected by the LHCb experiment in pp collisions at root s = 7 TeV, corresponding to an integrated luminosity of 1.0 fb(-1). Several angular observables are measured in bins of the dimuon invariant mass squared, q(2). A first measurement of the zero-crossing point of the forward-backward asymmetry of the dimuon system is also presented. The zero-crossing point is measured to be q(0)(2) = 4.9 +/- 0.9 GeV2/c(4), where the uncertainty is the sum of statistical and systematic uncertainties. The results are consistent with the Standard Model predictions.

K-ASTERISK-L(+)L(-)12.15.Mm01 natural sciencesB physicsLuminositydecayHigh Energy Physics - ExperimentSettore FIS/04 - Fisica Nucleare e SubnucleareNeutral currentFlavor physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Invariant massQCDetectors de radiaciómedia_commonPhysicsB0 mesonHadron-induced high- and super-high-energy interactions (energy > 10 GeV): Inclusive production with identified hadronObservableCP violationFIS/01 - FISICA SPERIMENTALENuclear countersLeptonic semileptonic and radiative decays of bottom mesonsFísica nuclearLHCB physics; Flavor physics; Flavour Changing Neutral Currents; Hadron-Hadron Scattering; Rare decayParticle Physics - ExperimentParticle physicsNuclear and High Energy Physicsmedia_common.quotation_subject14.40.NdFlavour Changing Neutral CurrentsHadronsAsymmetryPartícules (Física nuclear)Standard ModelB physics; Flavor physics; Flavour Changing Neutral Currents; Hadron-Hadron Scattering; Rare decay; Nuclear and High Energy PhysicsNeutral currentsAngular distributionASYMMETRIES0103 physical sciencesLeptonic semileptonic and radiative decays of bottom mesonLHC flavour physics010306 general physicsHadron-induced high- and super-high-energy interactions (energy > 10 GeV): Inclusive production with identified hadronsB0 meson; decay; LHCb; LHCHadron-Hadron Scattering010308 nuclear & particles physicsBranching fractionCromodinàmica quànticaLHCbRare decay13.20.HeBottom mesons (|B|>0); Leptonic semileptonic and radiative decays of bottom mesons; Hadron-induced high- and super-high-energy interactions (energy > 10 GeV): Inclusive production with identified hadrons; Neutral currents; 14.40.Nd; 13.20.He; 13.85.Ni; 12.15.Mm;Bottom mesons (|B|>0)High Energy Physics::Experiment13.85.NiDifferential (mathematics)FIS/04 - FISICA NUCLEARE E SUBNUCLEAREQuantum chromodynamicsexperimental results
researchProduct

Searches for violation of lepton flavour and baryon number in tau lepton decays at LHCb

2013

Searches for the lepton flavour violating decay tau(-) -> mu(-)mu(+)mu(-) and the lepton flavour and baryon number violating decays tau(-) -> (p) over bar mu(+)mu(-) and tau(-) -> p mu(-)mu(-) have been carried out using proton-proton collision data, corresponding to an integrated luminosity of 1.0 fb(-1), taken by the LHCb experiment at root s = 7 TeV. No evidence has been found for any signal, and limits have been set at 90% confidence level on the branching fractions: B(tau(-) -> mu(-)mu(+)mu(-) mu(+)mu(-)) p mu(-)mu(-)) (p) over bar mu(+)mu(-) and tau(-) -> p mu(-)mu(-) decay modes represent the first direct experimental limits on these channels.

Nuclear and High Energy PhysicsParticle physicsFlavourDecays of leptons; Global symmetries (e.g. baryon number lepton number); 13.35.-r; 11.30.Fs;FOS: Physical sciences01 natural sciencesPartícules (Física nuclear)High Energy Physics - ExperimentSettore FIS/04 - Fisica Nucleare e SubnucleareNuclear physicslepton number)High Energy Physics - Experiment (hep-ex)Violació CP (Física nuclear)0103 physical sciences[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]LHC flavour physics lepton number11.30.FsNeutrinsNeutrinos010306 general physicsParticles (Nuclear physics)Physics13.35.-rDecays of leptonsLarge Hadron Collider010308 nuclear & particles physicsGlobal symmetries (e.g. baryon number lepton number)Leptons (Física nuclear)Global symmetries (e.g.High Energy Physics::Phenomenologybaryon numberDecays of lepton3. Good healthFIS/01 - FISICA SPERIMENTALELeptons (Nuclear physics)Física nuclearHigh Energy Physics::ExperimentBaryon numberNeutrino11.30.FFIS/04 - FISICA NUCLEARE E SUBNUCLEAREParticle Physics - ExperimentLeptonCP violation (Nuclear physics)Physics Letters B
researchProduct

Measurement of CP asymmetries in the decays B0 → K*0 μ+μ- and B+ → K+ μ+μ-

2014

The direct CP asymmetries of the decays B 0 → K *0 μ + μ − and B + → K + μ + μ − are measured using pp collision data corresponding to an integrated luminosity of 3.0 fb−1 collected with the LHCb detector. The respective control modes B 0 → J/ψK *0 and B + → J/ψK + are used to account for detection and production asymmetries. The measurements are made in several intervals of μ + μ − invariant mass squared, with the ϕ(1020) and charmonium resonance regions excluded. Under the hypothesis of zero CP asymmetry in the control modes, the average values of the asymmetries are ACP(B0→K∗0μ+μ−)=−0.035±0.024±0.003,ACP(B+→K+μ+μ−)=0.012±0.017±0.001, where the first uncertainties are statistical and the …

Nuclear and High Energy PhysicsParticle physicsB physicmedia_common.quotation_subject14.40.NdFlavour Changing Neutral CurrentsLHCb - Abteilung HofmannHadrons01 natural sciencesAsymmetryB physicsNOPhysics Particles & FieldsLuminosityStandard Model0103 physical sciencesLeptonic semileptonic and radiative decays of bottom mesonInvariant mass010306 general physicsLarge Hadron Collider (France and Switzerland)QCmedia_commonPhysicsFlavour Changing Neutral CurrentScience & TechnologyHadron-Hadron Scattering010308 nuclear & particles physicsPhysicsHigh Energy Physics::PhenomenologyGran Col·lisionador d'HadronsParticle physicsResonanceCharge conjugation parity time reversal and other discrete symmetrieLHCbCP violationRare decay13.20.HePhysical SciencesBottom mesons (|B|>0)11.30.ErFísica nuclearB physics; CP violation; Flavour Changing Neutral Currents; Hadron-Hadron Scattering; Rare decayProduction (computer science)High Energy Physics::ExperimentLHCFísica de partículesExperiments
researchProduct

Determination of the $X(3872)$ meson quantum numbers

2013

The quantum numbers of the X(3872) meson are determined to be J(PC) = 1(++) based on angular correlations in B+ -> X(3872)K+ decays, where X(3872) -> pi(+) pi(-) j/psi and J/psi -> pi(+) mu(-). The data correspond to 1.0 fb(-1) of pp collisions collected by the LHCb detector. The only alternative assignment allowed by previous measurements J(PC) = 2(-+) is rejected with a confidence level equivalent to more than 8 Gaussian standard deviations using a likelihood-ratio test in the full angular phase space. This result favors exotic explanations of the X(3872) state.

Particle physicsCOLLISIONSMesonExotic mesonHigh Energy Physics::LatticeGaussian14.40.NdNuclear TheoryGeneral Physics and AstronomyFOS: Physical sciences01 natural sciencesSettore FIS/04 - Fisica Nucleare e SubnucleareHigh Energy Physics - ExperimentNuclear physicsPhysics and Astronomy (all)symbols.namesakeHigh Energy Physics - Experiment (hep-ex)14.40.RtHadronic decays of bottom meson0103 physical sciences13.25.GvPi[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]CollisionsNuclear Experiment010306 general physicsPhysics010308 nuclear & particles physicsHigh Energy Physics::PhenomenologyParticle physicsState (functional analysis)Exotic hadrons Charmonium Hadron ColliderQuantum numberLHCbFIS/01 - FISICA SPERIMENTALEPhase space13.25.HwsymbolsBottom mesons (|B|>0)TetraquarkFísica nuclearHigh Energy Physics::ExperimentLHCFísica de partículesExperimentsFIS/04 - FISICA NUCLEARE E SUBNUCLEAREParticle Physics - ExperimentHadronic decays of J/ψ Υ and other quarkoniaX(3872)
researchProduct

Search for CP violation using T-odd correlations in D-0 -> K+K-pi(+)pi(-) decays

2014

A search for $CP$ violation using $T$-odd correlations is performed using the four-body $D^0 \to K^+K^-\pi^+\pi^-$ decay, selected from semileptonic $B$ decays. The data sample corresponds to integrated luminosities of $1.0\,\text{fb}^{-1}$ and $2.0\,\text{fb}^{-1}$ recorded at the centre-of-mass energies of 7 TeV and 8 TeV, respectively. The $CP$-violating asymmetry $a_{CP}^{T\text{-odd}}$ is measured to be $(0.18\pm 0.29\text{(stat)}\pm 0.04\text{(syst)})\%$. Searches for $CP$ violation in different regions of phase space of the four-body decay, and as a function of the $D^0$ decay time, are also presented. No significant deviation from the $CP$ conservation hypothesis is found.

CP violation Charm physics Hadron-Hadron Scattering Flavor physics14.40.Lb01 natural sciencesSettore FIS/04 - Fisica Nucleare e SubnucleareHigh Energy Physics - ExperimentFlavor physics[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]ASTRONOMY & ASTROPHYSICSQCmedia_commonCharm physicsPhysicsHadronic decays of charmed mesonCharm physics; CP violation; Flavor physics; Hadron-Hadron ScatteringPhysicsPHYSICS PARTICLES & FIELDSParticle physicsCharge conjugation parity time reversal and other discrete symmetrieDecay timeCP violationPhysical Sciences13.25.FtCP violationFísica nuclearLHCParticle Physics - ExperimentTRIPLE-PRODUCT CORRELATIONSPACS: 13.25.Ft 11.30.ErCharm physicNuclear and High Energy PhysicsParticle physicsmedia_common.quotation_subjectLHCb - Abteilung HofmannHadronsAsymmetryNONuclear physicsTheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY0103 physical sciencesPiSDG 7 - Affordable and Clean Energy010306 general physicsLarge Hadron Collider (France and Switzerland)Science & Technology/dk/atira/pure/sustainabledevelopmentgoals/affordable_and_clean_energyHadron-Hadron Scatteringhep-ex010308 nuclear & particles physicsGran Col·lisionador d'HadronsCharm physics; CP violation; Flavor physics; Hadron-Hadron Scattering; Nuclear and High Energy PhysicsBABAR detectorHEPANGULAR-CORRELATIONSLHCbFlavor physicPhase spaceBaBar11.30.ErFísica de partículesExperimentsCharmed mesons (|C|>0 B=0)
researchProduct