0000000000477718
AUTHOR
Junyang Ma
Echo-assisted impulsive alignment of room-temperature acetone molecules
International audience; We experimentally and theoretically investigate the field-free alignment of the asymmetric-top acetone molecule. Our study shows that the production of postpulse aligned molecules in a dense sample (0.05-0.2 bar) of room-temperature acetone using a single-pulse excitation can be significantly improved by rotational alignment echoes induced in a two-pulse excitation scheme. We report the observation of fractional echoes that can be used to reveal the nonlinearity of the molecular system. In a proof-of-principle experiment, a pre-aligned sample of acetone is also used for third-harmonic generation. The analysis of the experimental data with numerical simulations based …
Ultrafast ionization and rotational dynamics of molecules in strong laser fields
The investigation of ultrafast molecular dynamics is of great importance towards the understanding of a variety of natural phenomena in physical and chemical sciences. With the rapid development of femtosecond laser systems and precision detection technologies, it is possible now to visualize and steer the motion of molecules in matter as well as the ultrafast dynamics of electrons and nuclei in molecules on a microscopic timescale. When a molecule is exposed to a strong laser field, its electrons can be freed or excited, which often triggers a rapid dissociation of the system, in which the released electrons and nuclei exhibit a strong correlation, while the electronic motion on attosecond…
Ultrafast collisional dissipation of symmetric-top molecules probed by rotational alignment echoes
We experimentally and theoretically investigate the ultrafast collisional dynamics of a symmetric-top molecule (${\mathrm{C}}_{2}{\mathrm{H}}_{6}$) in pure gas and mixtures with He at high density by employing the rotational alignment echo created by a pair of time-delayed intense laser kicks. The decrease of the amplitude of the echo when increasing the delay between the two laser pulses, reflecting the collisional relaxation of the system, is measured by probing the transient birefringence induced in the medium. The theoretical predictions, carried using purely classical molecular dynamics simulations, reproduce well the observed features, as demonstrated previously for a linear molecule.…
Rotational echoes as a tool for investigating ultrafast collisional dynamics of molecules
We show that recently discovered rotational echoes of molecules provide an efficient tool for studying collisional molecular dynamics in high-pressure gases. Our study demonstrates that rotational echoes enable the observation of extremely fast collisional dissipation, at timescales of the order of a few picoseconds, and possibly shorter. The decay of the rotational alignment echoes in ${\mathrm{CO}}_{2}$ gas and ${\mathrm{CO}}_{2}\text{\ensuremath{-}}\mathrm{He}$ mixture up to 50 bar was studied experimentally, delivering collision rates that are in good agreement with the theoretical expectations. The suggested measurement protocol may be used in other high-density media, and potentially …
Spatiotemporal rotational dynamics of laser-driven molecules
Molecular alignment and orientation by laser fields has attracted significant attention in recent years, mostly due to new capabilities to manipulate the molecular spatial arrangement. Molecules can now be efficiently prepared for ionization, structural imaging, orbital tomography, and more, enabling, for example, shooting of dynamic molecular movies. Furthermore, molecular alignment and orientation processes give rise to fundamental quantum and classical phenomena like quantum revivals, Anderson localization, and rotational echoes, just to mention a few. We review recent progress on the visualization, coherent control, and applications of the rich dynamics of molecular rotational wave pack…
Molecular alignment echoes probe collision-induced rotational-speed changes
International audience; We show that the decays with pressure of the rotational alignment echoes induced in N 2 O-He gas mixtures by two ultrashort laser pulses with various delays show detailed information about collision-induced changes of the rotational speed of the molecules. Measurements and classical calculations consistently demonstrate that collisions reduce the echo amplitude all the more efficiently when the echo appears late. We quantitatively explain this behavior by the filamentation of the classical rotational phase space induced by the first pulse and the narrowing of the filaments with time. The above mentioned variation of the echo decay then reflects the ability of collisi…