0000000000477871

AUTHOR

A. Guzman

showing 4 related works from this author

The Lateral Trigger Probability function for the Ultra-High Energy Cosmic Ray Showers detected by the Pierre Auger Observatory

2011

In this paper we introduce the concept of Lateral Trigger Probability (LTP) function, i.e., the probability for an Extensive Air Shower (EAS) to trigger an individual detector of a ground based array as a function of distance to the shower axis, taking into account energy, mass and direction of the primary cosmic ray. We apply this concept to the surface array of the Pierre Auger Observatory consisting of a 1.5 km spaced grid of about 1600 water Cherenkov stations. Using Monte Carlo simulations of ultra-high energy showers the LTP functions are derived for energies in the range between 1017 and 1019 eV and zenith angles up to 65. A parametrization combining a step function with an exponenti…

[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE][PHYS.ASTR.IM]Physics [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]AstronomyAstrophysics::High Energy Astrophysical PhenomenaExtensive air showerUltra-high Energy Cosmic RayMonte Carlo methodFOS: Physical sciencesCosmic rayEXTENSIVE AIR-SHOWERSTrigger performance01 natural sciences7. Clean energyUltra-high Energy Cosmic Rays; Pierre Auger Observatory; Extensive air showers; Trigger performance; Surface detector; Hybrid detectorHigh Energy Physics - ExperimentAugerNuclear physicsHigh Energy Physics - Experiment (hep-ex)0103 physical sciencesUltra-high-energy cosmic ray010303 astronomy & astrophysicsCiencias ExactasZenithCherenkov radiationUltra-High Energy Cosmic RaysPhysicsPierre Auger ObservatoryHigh Energy Astrophysical Phenomena (astro-ph.HE)010308 nuclear & particles physicsPhysicsHybrid detector[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Surface detectorAstrophysics::Instrumentation and Methods for AstrophysicsFísicaAstronomy and AstrophysicsPierre Auger ObservatoryUltra-high Energy Cosmic Rays[SDU.ASTR.IM]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Instrumentation and Methods for Astrophysic [astro-ph.IM]Air showerExperimental High Energy PhysicsSIMULATIONComputingMethodologies_DOCUMENTANDTEXTPROCESSINGFísica nuclearExtensive Air ShowersAstrophysics - High Energy Astrophysical PhenomenaRAIOS CÓSMICOS
researchProduct

Measurement of the Proton-Air Cross Section ats=57  TeVwith the Pierre Auger Observatory

2012

We report a measurement of the proton-air cross section for particle production at the center-of-mass energy per nucleon of 57 TeV. This is derived from the distribution of the depths of shower maxima observed with the Pierre Auger Observatory: systematic uncertainties are studied in detail. Analyzing the tail of the distribution of the shower maxima, a proton-air cross section of [505 +/- 22(stat)(-36)(+28)(syst)] mb is found.

Pierre Auger ObservatoryPhysicsProton010308 nuclear & particles physicsAstrophysics::High Energy Astrophysical PhenomenaHadronAstrophysics::Instrumentation and Methods for AstrophysicsGeneral Physics and Astronomy01 natural scienceslaw.inventionAugerNuclear physicsCross section (physics)law0103 physical sciencesHigh Energy Physics::ExperimentFermilabNuclear Experiment010306 general physicsNucleonColliderPhysical Review Letters
researchProduct

A search for anisotropy in the arrival directions of ultra high energy cosmic rays recorded at the Pierre Auger Observatory

2012

Observations of cosmic ray arrival directions made with the Pierre Auger Observatory have previously provided evidence of anisotropy at the 99% CL using the correlation of ultra high energy cosmic rays (UHECRs) with objects drawn from the Véron-Cetty Véron catalog. In this paper we report on the use of three catalog independent methods to search for anisotropy. The 2pt–L, 2pt+ and 3pt methods, each giving a different measure of selfclustering in arrival directions, were tested on mock cosmic ray data sets to study the impacts of sample size and magnetic smearing on their results, accounting for both angular and energy resolutions. If the sources of UHECRs follow the same large scale structu…

HIRES STEREO[SDU.ASTR.CO]Sciences of the Universe [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]AstronomySMALL-SCALE ANISOTROPYAstrophysics01 natural sciencesAltas energíasCosmic Rays ShowerCosmologyUltra-high-energy cosmic rayAnisotropy010303 astronomy & astrophysicsmedia_commonPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)[PHYS]Physics [physics]BL-LACERTAEAstrophysics::Instrumentation and Methods for AstrophysicsPierre Auger ObservatoryRadiación cósmicaFísica nuclearOBJECTSAstrophysics - High Energy Astrophysical Phenomenacosmic ray experiments; ultra high energy cosmic raysACTIVE GALACTIC NUCLEIActive galactic nucleusmedia_common.quotation_subjectAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic raysearch for anisotropyultra high energy cosmic raysCosmic Ray[PHYS.ASTR.CO]Physics [physics]/Astrophysics [astro-ph]/Cosmology and Extra-Galactic Astrophysics [astro-ph.CO]0103 physical sciences010306 general physicsCiencias ExactasPierre Auger ObservatorySPECTRUMAstronomyFísicaAstronomy and AstrophysicsASTROFÍSICAUniverseGalaxyExperimental High Energy Physicsanisotrpycosmic ray experiments[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]cosmologyJournal of Cosmology and Astroparticle Physics
researchProduct

Description of atmospheric conditions at the Pierre Auger Observatory using the Global Data Assimilation System (GDAS)

2012

Atmospheric conditions at the site of a cosmic ray observatory must be known for reconstructing observed extensive air showers. The Global Data Assimilation System (GDAS) is a global atmospheric model predicated on meteorological measurements and numerical weather predictions. GDAS provides altitude-dependent profiles of the main state variables of the atmosphere like temperature, pressure, and humidity. The original data and their application to the air shower reconstruction of the Pierre Auger Observatory are described. By comparisons with radiosonde and weather station measurements obtained on-site in Malargüe and averaged monthly models, the utility of the GDAS data is shown.

AstronomyAtmospheric modelAtmospheric monitoringAtmospheric sciencesCosmic Rays Shower01 natural scienceslaw.inventionData assimilationlawcosmic rays; extensive air showers; atmospheric monitoring; atmospheric modelsDEPENDENCEATMOSFERA (OBSERVAÇÃO)TEMPERATUREPhysics::Atmospheric and Oceanic PhysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)[PHYS]Physics [physics]Cascada atmosférica extensaOPTICAL DEPTH[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astrophysics::Instrumentation and Methods for AstrophysicsPierre Auger ObservatoryAtmospheric temperatureRadiación cósmicaAtmosphere of EarthComputingMethodologies_DOCUMENTANDTEXTPROCESSINGRadiosondeFísica nuclearREFRACTIVE-INDEXAstrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR.HE]Physics [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]MeteorologyAtmospheric MonitoringAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesCosmic Rays ShowersEXTENSIVE AIR-SHOWERSCosmic RayAtmósferaWeather stationAtmospheric models0103 physical sciencesExtensive air showers010306 general physicsCosmic raysDETECTORCiencias ExactasPierre Auger ObservatoryAtmospheric models010308 nuclear & particles physicsFísicaAstronomy and Astrophysics13. Climate actionExperimental High Energy PhysicsEMISSION[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]
researchProduct