0000000000477872

AUTHOR

B.j. Oommen

A solution to the stochastic point location problem in metalevel nonstationary environments.

This paper reports the first known solution to the stochastic point location (SPL) problem when the environment is nonstationary. The SPL problem involves a general learning problem in which the learning mechanism (which could be a robot, a learning automaton, or, in general, an algorithm) attempts to learn a "parameter," for example, lambda*, within a closed interval. However, unlike the earlier reported results, we consider the scenario when the learning is to be done in a nonstationary setting. For each guess, the environment essentially informs the mechanism, possibly erroneously (i.e., with probability p), which way it should move to reach the unknown point. Unlike the results availabl…

research product

Novel Distance Estimation Methods Using 'Stochastic Learning on the Line' Strategies

In this paper, we consider the problem of Distance Estimation (DE) when the inputs are the $x$ and $y$ coordinates (or equivalently, the latitudinal and longitudinal positions) of the points under consideration. The aim of the problem is to yield an accurate value for the real (road) distance between the points specified by the latter coordinates. 1 This problem has, typically, been tackled by utilizing parametric functions called the “Distance Estimation Functions” (DEFs). The parameters are learned from the training data (i.e., the true road distances) between a subset of the points under consideration. We propose to use Learning Automata (LA)-based strategies to solve the problem. In par…

research product

Random Early Detection for Congestion Avoidance in Wired Networks: A Discretized Pursuit Learning-Automata-Like Solution

Published version of an article in the journal: IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works In this paper, we present a learning-automata-like (LAL) mechanism for congestion avoidance in wired networks. Our algorithm, named as LAL random early detection (LALRED), is founded on the principles of the operations of existing RED con…

research product

Peptide classification using optimal and information theoretic syntactic modeling

Accepted version of an article published in the journal: Pattern Recognition. Published version available on Sciverse: http://dx.doi.org/10.1016/j.patcog.2010.05.022 We consider the problem of classifying peptides using the information residing in their syntactic representations. This problem, which has been studied for more than a decade, has typically been investigated using distance-based metrics that involve the edit operations required in the peptide comparisons. In this paper, we shall demonstrate that the Optimal and Information Theoretic (OIT) model of Oommen and Kashyap [22] applicable for syntactic pattern recognition can be used to tackle peptide classification problem. We advoca…

research product

Learning-automaton-based online discovery and tracking of spatiotemporal event patterns.

Discovering and tracking of spatiotemporal patterns in noisy sequences of events are difficult tasks that have become increasingly pertinent due to recent advances in ubiquitous computing, such as community-based social networking applications. The core activities for applications of this class include the sharing and notification of events, and the importance and usefulness of these functionalities increase as event sharing expands into larger areas of one's life. Ironically, instead of being helpful, an excessive number of event notifications can quickly render the functionality of event sharing to be obtrusive. Indeed, any notification of events that provides redundant information to the…

research product

Solving Stochastic Nonlinear Resource Allocation Problems Using a Hierarchy of Twofold Resource Allocation Automata

In a multitude of real-world situations, resources must be allocated based on incomplete and noisy information. However, in many cases, incomplete and noisy information render traditional resource allocation techniques ineffective. The decentralized Learning Automata Knapsack Game (LAKG) was recently proposed for solving one such class of problems, namely the class of Stochastic Nonlinear Fractional Knapsack Problems. Empirically, the LAKG was shown to yield a superior performance when compared to methods which are based on traditional parameter estimation schemes. This paper presents a completely new online Learning Automata (LA) system, namely the Hierarchy of Twofold Resource Allocation …

research product