0000000000478166

AUTHOR

G. S. Simpson

The Collinear Resonance Ionization Spectroscopy (CRIS) experimental setup at CERN-ISOLDE

The CRIS setup at CERN-ISOLDE is a laser spectroscopy experiment dedicated to the high-resolution study of the spin, hyperfine structure and isotope shift of radioactive nuclei with low production rates (a few per second). It combines the Doppler-free resolution of the in-flight collinear geometry with the high detection efficiency of resonant ionisation. A recent commissioning campaign has demonstrated a 1% experimental efficiency, and as low as a 0.001% non-resonant ionisation. The current status of the experiment and its recent achievements with beams of francium isotopes are reported. The first identified systematic effects are discussed. publisher: Elsevier articletitle: The Collinear …

research product

β - and γ -spectroscopy study of Pd119 and Ag119

research product

Shape dynamics in neutron-rich Kr isotopes: Coulomb excitation of 92Kr, 94Kr and 96Kr

We report on the study of excited states in 92,94,96Kr populated via projectile Coulomb excitation at safe energies. The radioactive ion beams at energies of 2.85 MeV/u were delivered by the REX-ISOLDE facility at CERN and impinged on self-supporting 194,196Pt targets. The emitted γ -rays were detected by the Miniball detector-array. A detailed description of the experimental techniques used for extracting diagonal and transitional matrix elements and of the theoretical framework is given. The present experiment reveals the moderate evolution of the collective structure in the considered neutron-rich Kr isotopic chain, which is supported by the interacting boson model combined with the self…

research product

A dedicated decay-spectroscopy station for the collinear resonance ionization experiment at ISOLDE

A newdecay-spectroscopystation(DSS)has been developed to be coupled to the collinear resonance ionization spectroscopy (CRIS) beam line at CERN-ISOLDE. The system uses a rotatable wheel with ten 20 mg=cm2 carbon foils as beam implantation sites for the efficient measurement of charged decay products. Silicon detectors are placed on either side of the carbon foil in an optimal geometry to cover a large solid angle for detecting these charged particles. In addition to the silicon detectors at the on-beam axis position, a second pair of off-beam axis detectors are placed at the wheel position 108 deg. away, allowing longer-lived species to be studied. Up to three high purity germanium detector…

research product

CRIS: A new method in isomeric beam production

The Collinear Resonance Ionization Spectroscopy (CRIS) experiment at ISOLDE, CERN, uses laser radiation to stepwise excite and ionize an atomic beam for the purpose of ultra-sensitive detection of rare isotopes, and hyperfine-structure measurements. The technique also offers the ability to purify an ion beam that is heavily contaminated with radioactive isobars, including the ground state of an isotope from its isomer, allowing decay spectroscopy on nuclear isomeric states to be performed. The isomeric ion beam is selected by resonantly exciting one of its hyperfine structure levels, and subsequently ionizing it. This selectively ionized beam is deflected to a decay spectroscopy station (DS…

research product

Identification of a millisecond isomeric state inCd81129via the detection of internal conversion and Compton electrons

Abstract The decay of an isomeric state in the neutron-rich nucleus 129 Cd has been observed via the detection of internal conversion and Compton electrons providing first experimental information on excited states in this nucleus. The isomer was populated in the projectile fission of a 238 U beam at the Radioactive Isotope Beam Factory at RIKEN. From the measured yields of γ -rays and internal conversion electrons, a multipolarity of E 3 was tentatively assigned to the isomeric transition. A half-life of T 1 / 2 = 3.6 ( 2 ) ms was determined for the new state which was assigned a spin of ( 21 / 2 + ) , based on a comparison to shell model calculations performed using state-of-the-art reali…

research product

Neutron configurations in 113Pd

Excited states in 113Pd, populated in β− decay of 113Rh and in spontaneous fission of 248Cm and 252Cf, have been studied by means of γ spectroscopy at the IGISOL facility of Jyvaskylä University and using large arrays of Ge detectors (Eurogam2 and Gammasphere, respectively). The position of the 11/2− yrast excitation in 113Pd, proposed recently at 166.1 keV by other authors, has been corrected to 98.9 keV. The decay of this level has been discussed to explain the observed transition intensities. The 7/2− member of the yrast, unique-parity configuration has been identified at 84.9 keV and a band on top of this level proposed. On top of the 1/2+, first excited state a band has been built and …

research product

Evidence for a Smooth Onset of Deformation in the Neutron-Rich Kr Isotopes

The neutron-rich nuclei Kr94,96 were studied via projectile Coulomb excitation at the REX-ISOLDE facility at CERN. Level energies of the first excited 2 + states and their absolute E2 transition strengths to the ground state are determined and discussed in the context of the E(21+) and B(E2;21+→01+) systematics of the krypton chain. Contrary to previously published results no sudden onset of deformation is observed. This experimental result is supported by a new proton-neutron interacting boson model calculation based on the constrained Hartree-Fock-Bogoliubov approach using the microscopic Gogny-D1M energy density functional. © 2012 American Physical Society.

research product

Erratum: Evidence for a Smooth Onset of Deformation in the Neutron-Rich Kr Isotopes [Phys. Rev. Lett.108, 062701 (2012)]

research product

Study of medium-spin states of neutron-rich 87, 89, 91Rb isotopes

International audience; Excited states of the rubidium isotopes$_{37}^{87, 89, 91}$Rb have been studied at the INFN Legnaro National Laboratory. Measurements of the $\gamma$ -ray decay of fragments produced in binary grazing reactions resulting from the interaction of a beam of 530 MeV$^{96}$Zr ions with a$^{124}$Sn target have been complemented by studies of the $\gamma$ -ray decay of fission fragments produced in the interaction of a beam of 230 MeV$^{36}$S ions with a thick$^{176}$Yb target. The structure of the yrast states of$_{37}^{87, 89, 91}$Rb has been discussed within the context of spherical shell-model and cranked Nilsson-Strutinsky calculations.

research product

Yrast 6+Seniority Isomers of136,138Sn

Delayed γ-ray cascades, originating from the decay of (6⁺) isomeric states, in the very neutron-rich, semimagic isotopes (136,138)Sn have been observed following the projectile fission of a ²³⁸U beam at RIBF, RIKEN. The wave functions of these isomeric states are proposed to be predominantly a fully aligned pair of f(7/2) neutrons. Shell-model calculations, performed using a realistic effective interaction, reproduce well the energies of the excited states of these nuclei and the measured transition rates, with the exception of the B(E2;6⁺→4⁺) rate of ¹³⁶Sn, which deviates from a simple seniority scheme. Empirically reducing the νf(7/2)(2) orbit matrix elements produces a 4₁⁺ state with alm…

research product

Corrigendum to: “Shape dynamics in neutron-rich Kr isotopes: Coulomb excitation of 92Kr, 94Kr and 96Kr” [Nucl. Phys. A 899 (2013) 1–28]

research product

β- and γ-spectroscopy study of 119Pd and 119Ag

Neutron-rich 119Pd nuclei were produced in fission of natural uranium, induced by 25-MeV protons. Fission fragments swiftly extracted with the Ion Guide Isotope Separation On-Line method were mass separated using a dipole magnet and a Penning trap, providing mono-isotopic samples of 119Pd. Their β− decay was measured with γγ- and βγ-spectroscopy methods using low-energy germanium detectors and a thin plastic scintillator. Two distinct nuclear-level structures were observed in 119Ag, based on the 1/2− and 7/2+ isomers reported previously. The β−-decay work was complemented by a prompt-γ study of levels in 119Ag populated in spontaneous fission of 252Cf, performed using the Gammasphere array …

research product

Coulomb Excitation of (142) Xe

5 pags., 2 figs. -- Open Access funded by Creative Commons Atribution Licence 4.0. -- Presented at the XXXV Mazurian Lakes Conference on Physics, Piaski, Poland, September 3–9, 2017.

research product

Shape coexistence in the odd-odd nucleus 98Y : the role of the g9/2 neutron extruder

Excited states in 98Y, populated in neutron-induced fission of 235U and in spontaneous fission of 248Cm and 252Cf, have been studied by means of γ spectroscopy using the Lohengrin fission-fragment separator at ILL Grenoble and the EXILL, Eurogam2, and Gammasphere Ge arrays. Two new isomers have been found in 98Y: a deformed one with T1/2 = 180(7) ns and a rotational band on top of it, and a spherical one with T1/2 = 0.45(15)μs, analogous to the 8+ isomer in 96Y, corresponding to the (νg7/2,πg9/2)8+ spherical configuration. Using the JYFLTRAP Penning trap, an accurate excitation energy of 465.7(7) keV has been determined for the 2.36-s isomer in 98Y. This result and the studies of excited le…

research product

New lifetime measurements in 109 Pd and the onset of deformation at N = 60

Several new subnanosecond lifetimes were measured in 109Pd using the fast-timing βγγ (t) method. Fission fragments of the A = 109 mass chain were produced by bombarding natural uranium with 30 MeV protons at the Jyvaskyl ¨ a Ion Guide Isotope Separator On-Line (IGISOL) facility. Lifetimes were obtained for excited states ¨ in 109Pd populated following β decay of 109Rh. The new lifetimes provide some insight into the evolution of nuclear structure in this mass region. In particular, the distinct structure of the two low-lying 7/2+ states occurring systematically across the Pd isotopic chain is supported by the new lifetime measurements. The available nuclear data indicate a sudden increase i…

research product

Development of the CRIS (Collinear Resonant Ionisation Spectroscopy) beam line

The CRIS (Collinear Resonant Ionisation Spectroscopy) beam line is a new experimental set up at the ISOLDE facility at CERN. CRIS is being constructed for highresolution laser spectroscopy measurements on radioactive isotopes. These measurements can be used to extract nuclear properties of isotopes far from stability. The CRIS beam line has been under construction since 2009 and testing of its constituent parts have been performed using stable and radioactive ion beams, in preparation for its first on-line run. This paper will present the current status of the CRIS experiment and highlight results from the recent tests. ispartof: pages:012070-6 ispartof: Journal of Physics: Conference Serie…

research product

Detailed spectroscopy of doubly magic $^{132}$Sn

The structure of the doubly magic $^{132}_{50}$Sn$_{82}$ has been investigated at the ISOLDE facility at CERN, populated both by the $\beta^-$decay of $^{132}$In and $\beta^-$-delayed neutron emission of $^{133}$In. The level scheme of $^{132}$Sn is greatly expanded with the addition of 68 $\gamma$-transitions and 17 levels observed for the first time in the $\beta$ decay. The information on the excited structure is completed by new $\gamma$-transitions and states populated in the $\beta$-n decay of $^{133}$In. Improved delayed neutron emission probabilities are obtained both for $^{132}$In and $^{133}$In. Level lifetimes are measured via the Advanced Time-Delayed $\beta\gamma\gamma$(t) fas…

research product

High-sensitivity study of levels in 30Al following β decay of 30Mg

γ -ray and fast-timing spectroscopy were used to study levels in 30Al populated following the β− decay of 30Mg. Five new transitions and three new levels were located in 30Al. A search was made to identify the third 1+ state expected at an excitation energy of ∼2.5 MeV. Two new levels were found, at 3163.9 and 3362.5 keV, that are firm candidates for this state. Using the advanced time-delayed (ATD) βγγ (t) method we have measured the lifetime of the 243.8-keV state to be T1/2 = 15(4) ps, which implies that the 243.8-keV transition is mainly of M1 character. Its fast B(M1; 2+ → 3+) value of 0.10(3) W.u. is in very good agreement with the USD shell-model prediction of 0.090 W.u. The 1801.5-k…

research product

Laser assisted decay spectroscopy at the CRIS beam line at ISOLDE

A new collinear resonant ionization spectroscopy (Cris)beam line has recently been installed at Isolde, Cern utilising lasers to combine collinear laser spectroscopy and resonant ionization spectroscopy. The combined technique offers the ability to purify an ion beam that is heavily contaminated with radioactive isobars, including the ground state of an isotope from its isomer, allowing sensitive secondary experiments to be performed. A new programme aiming to use the Cris technique for the separation of nuclear isomeric states for decay spectroscopy will commence in 2011. A decay spectroscopy station, consisting of a rotating wheel implantation system for alpha decay spectroscopy, and thre…

research product

β - and γ -spectroscopy study of Pd 119 and Ag 119

research product

β decay of In133 : γ emission from neutron-unbound states in Sn133

Excited states in Sn-133 were investigated through the beta decay of In-133 at the ISOLDE facility. The ISOLDE Resonance Ionization Laser Ion Source (RILIS) provided isomer-selective ionization for In-133, allowing us to study separately, and in detail, the beta-decay branch of In-133 J(pi)= (9/2(+)) ground state and its J(pi) = (1/2(-)) isomer.Thanks to the large spin difference of the two beta-decaying states of In-133, it is possible to investigate separately the lower and higher spin states in the daughter, Sn-133, and thus to probe independently different single-particle and single-hole levels. We report here new gamma transitions observed in the decay of In-133, including those assign…

research product

Trap-assisted separation of nuclear states for gamma-ray spectroscopy: the example of100Nb

Low-lying levels in 100Mo are known to be populated by beta decay from both the ground and isomeric states in 100Nb. The small energy difference (~3 ppm) between the two parent states and the similarity of their half-lives make it difficult to distinguish experimentally between the two decay paths. A new technique for separating different states of nuclei has recently been developed in a series of experiments at the IGISOL facility, using the JYFLTRAP installation, at the University of Jyvaskyla where mass resolution ~2 ppm was achieved in mass measurements and in the production of 133mXe. This paper reports on the extension of this technique to allow the separate study of the gamma-ray dec…

research product

Application of ultra-fast timing techniques to the study of exotic and weakly produced nuclei

Ultra-fast time-delayed techniques have been recently applied in a number of studies where exotic nuclei were identified using advanced selection techniques. These include large Compton-suppressed Ge arrays, in-flight separators or recoil separators. Some of the new results are discussed in this presentation. Besides the results for $^{32}$Mg and $^{96}$Pd, they include the first determination of the half-life of the $8^+$ state in $^{80}$Ge, $T_1/2$ = 2.95(6) ns, and significantly more precise results for $^{51}$Mn (3680 keV level) and $^{48}$V (421 keV level), $T_1/2$ = 1760(40) ps and $T_1/2$ $\leq$ 135 ps, respectively. Development of new scintillators will steadily improve precision an…

research product

AGATA-Advanced GAmma Tracking Array

WOS: 000300864200005

research product

Study of Intermediate-spin States of $^{98}$Y

The nuclear structure of the odd–odd nucleus 98Y has been re-investigated by observing prompt γ rays emitted following the proton-induced fission of a 238U target, using the JUROGAM-II multidetector array. New highspin decays have been observed and placed in the level schemes using triple coincidences. The experimental level energies and γ-decay patterns are compared to GICM and QPRM calculations, assuming that this neutronrich N = 59 isotone is spherical at low energies and prolate deformed at intermediate spins. Web of Science 47 3 916 911

research product