0000000000480440
AUTHOR
Franz-josef Fritz
showing 6 related works from this author
Weitere Eigenwertabschätzungen für stochastische Matrizen
1979
Wie wir im Anschlus an 3.2 bemerkten, bestimmen die im Innern des Einheitskreises der komplexen Ebene liegenden Eigenwerte einer stochastischen Matrix A wesentlich die Konvergenzgeschwindigkeit der Folge der A k. Um fur diese Eigenwerte Abschatzungen nach oben zu gewinnen, erganzen wir die Betrachtungen aus 2.4 und 2.5.
Mischen von Spielkarten
1979
Seien t Spielkarten vorgegeben (etwa t = 32). Als Zustande des zu beschreibenden Systems wahlen wir die n = t! moglichen Lagen der t Karten. Ferner sei vorgegeben eine „Verteilung“ p auf der symmetrischen Gruppe St mit p(π) ≥ 0 fur alle π ∈ St und $$\sum\limits_{\pi \in S_{t}} p(\pi) = 1.$$
Eigenwerte stochastischer Matrizen
1979
Zur Behandlung der Konvergenzfrage aus 1.4 furen wir auf dem ℂ-Vektor- raum der Matrizen vom Typ (n,n) mit komplexen Koeffizienten Normen ein:
Irrfahrten und verwandte Probleme
1979
Wir beweisen zuerst einen Satz uber die Eigenwerte von reellen Jacobi-Matrizen (auch Dreibandmatrizen genannt), welche nicht notwendig stochastisch sein mussen.
Abgeleitete stochastische Matrizen
1979
Einfuhrung. Gegeben seien zwei stochastische Prozesse mit den zugehorigen Zustandsmengen Zk und den Ubergangsmatrizen Ak = (aij[k]) (k = 1,2). Wir definieren einen neuen stochastischen Prozes auf folgende Weise:
Prozesse mit absorbierenden Zuständen
1979
Viele stochastische Matrizen, die aus interessanten Prozessen stammen, sind nicht unzerlegbar, sondern weisen sog. absorbierende Zustande auf. Mit solchen Matrizen beschaftigen wir uns in diesem Paragraphen.