0000000000480552
AUTHOR
Guo Xiuyun
C-Supplemented subgroups of finite groups
A subgroup H of a group G is said to be c-supplemented in G if there exists a subgroup K of G such that HKa G and H\ K is contained in CoreGOHU .W e follow Hall's ideas to characterize the structure of the finite groups in which every subgroup is c-supplemented. Properties of c-supplemented subgroups are also applied to determine the structure of some finite groups.
On the Deskins index complex of a maximal subgroup of a finite group
AbstractLet M be a maximal subgroup of a finite group G. A subgroup C of G is said to be a completion of M in G if C is not contained in M while every proper subgroup of C which is normal in G is contained in M. The set, I(M), of all completions of M is called the index complex of M in G. Set P(M) = {C ϵ I(M) ¦ C} is maximal in I(M) and G = CM. The purpose of this note is to prove: A finite group G is solvable if and only if, for each maximal subgroup M of G, P(M) contains element C with CK(C) nilpotent.