0000000000480645

AUTHOR

Amiran Gogatishvili

0000-0003-3459-0355

showing 2 related works from this author

A non-doubling Trudinger inequality

2005

Hölder's inequalityInequalityGeneral Mathematicsmedia_common.quotation_subjectMathematical analysisApplied mathematicsmedia_commonMathematicsStudia Mathematica
researchProduct

Interpolation properties of Besov spaces defined on metric spaces

2010

Let X = (X, d, μ)be a doubling metric measure space. For 0 < α < 1, 1 ≤p, q < ∞, we define semi-norms When q = ∞ the usual change from integral to supremum is made in the definition. The Besov space Bp, qα (X) is the set of those functions f in Llocp(X) for which the semi-norm ‖f ‖ is finite. We will show that if a doubling metric measure space (X, d, μ) supports a (1, p)-Poincare inequality, then the Besov space Bp, qα (X) coincides with the real interpolation space (Lp (X), KS1, p(X))α, q, where KS1, p(X) is the Sobolev space defined by Korevaar and Schoen [15]. This results in (sharp) imbedding theorems. We further show that our definition of a Besov space is equivalent with the definiti…

Pure mathematicsGeneral Mathematics010102 general mathematicsMathematical analysisSpace (mathematics)01 natural sciencesMeasure (mathematics)Infimum and supremum010101 applied mathematicsSobolev spaceMetric spaceMetric (mathematics)Interpolation spaceBesov space0101 mathematicsMathematicsMathematische Nachrichten
researchProduct