0000000000480647

AUTHOR

Neil Immerman

The Crane Beach Conjecture

A language L over an alphabet A is said to have a neutral letter if there is a letter e/spl isin/A such that inserting or deleting e's from any word in A* does not change its membership (or non-membership) in L. The presence of a neutral letter affects the definability of a language in first-order logic. It was conjectured that it renders all numerical predicates apart from the order predicate useless, i.e., that if a language L with a neutral letter is not definable in first-order logic with linear order then it is not definable in first-order. Logic with any set /spl Nscr/ of numerical predicates. We investigate this conjecture in detail, showing that it fails already for /spl Nscr/={+, *…

research product

First-order expressibility of languages with neutral letters or: The Crane Beach conjecture

A language L over an alphabet A is said to have a neutral letter if there is a letter [email protected]?A such that inserting or deleting e's from any word in A^* does not change its membership or non-membership in L. The presence of a neutral letter affects the definability of a language in first-order logic. It was conjectured that it renders all numerical predicates apart from the order predicate useless, i.e., that if a language L with a neutral letter is not definable in first-order logic with linear order, then it is not definable in first-order logic with any set N of numerical predicates. Named after the location of its first, flawed, proof this conjecture is called the Crane Beach …

research product