0000000000481741

AUTHOR

G. Marcel

showing 2 related works from this author

High-energy monitoring of NGC 4593 II. Broad-band spectral analysis: testing the two-corona model

2019

It is widely believed that the primary X-ray emission of AGN is due to the Comptonisation of optical-UV photons from a hot electron corona, while the origin of the 'soft-excess' is still uncertain and matter of debate. A second Comptonisation component, called warm corona, was therefore proposed to account for the soft-excess, and found in agreement with the optical-UV to X-ray emission of a sample of Seyfert galaxies. In this context, we exploit the broadband XMM-Newton and NuSTAR simultaneous observations of the Seyfert galaxy NGC 4593 to further test the so called "two corona model". The NGC 4593 spectra are well reproduced by the model, from the optical/UV to the hard X-rays. Moreover, …

galaxie [X-rays]High energyPhotonAstrophysics::High Energy Astrophysical Phenomenablack hole physicsgalaxies: activeFOS: Physical sciencesContext (language use)AstrophysicsAstrophysics::Cosmology and Extragalactic Astrophysics01 natural sciencesmagnetohydrodynamics (MHD)Spectral lineCorona (optical phenomenon)X-rays: binariesaccretionPrimary (astronomy)Seyfert [galaxies]0103 physical sciencesAstrophysics::Solar and Stellar AstrophysicsSpectral analysis010303 astronomy & astrophysicsAstrophysics::Galaxy AstrophysicsPhysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)individuals: (NGC 4593) [X-rays][SDU.ASTR]Sciences of the Universe [physics]/Astrophysics [astro-ph]010308 nuclear & particles physicsaccretion disks[SDU.ASTR.HE]Sciences of the Universe [physics]/Astrophysics [astro-ph]/High Energy Astrophysical Phenomena [astro-ph.HE]Astronomy and AstrophysicsAstronomy and AstrophysicGalaxygalaxies: SeyfertX-rays: galaxiesISM: jets and outflowsSpace and Planetary Science[SDU]Sciences of the Universe [physics]active [galaxies]Astrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]X-rays: individuals: (NGC 4593)
researchProduct

Tracking the evolution of the accretion flow in MAXI J1820+070 during its hard state with the JED-SAD model

2021

X-ray binaries in outburst typically show two canonical X-ray spectral states, i.e. hard and soft states, in which the physical properties of the accretion flow and of the jet are known to change. Recently, the JED-SAD paradigm has been proposed for black hole X-ray binaries, aimed to address the accretion-ejection interplay in these systems. According to this model, the accretion flow is composed by an outer standard Shakura-Sunyaev disk (SAD) and an inner hot Jet Emitting Disk (JED). The JED produces both the hard X-ray emission, effectively playing the role of the hot corona, and the radio jets. In this paper, we use the JED-SAD model to describe the evolution of the accretion flow in th…

X-rays: AccretionAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstrophysics01 natural sciencesX-rays: Accretion disksSpectral lineX-rays: binariesSettore FIS/05 - Astronomia E Astrofisicaaccretion0103 physical sciencesThick disk010303 astronomy & astrophysicsHigh Energy Astrophysical Phenomena (astro-ph.HE)PhysicsJet (fluid)Accretion (meteorology)010308 nuclear & particles physicsaccretion disksAstronomy and AstrophysicsRadiusX-rays: individuals: MAXI J1820+070CoronaBlack holeISM: jets and outflowsSpace and Planetary ScienceReflection (physics)Astrophysics - High Energy Astrophysical Phenomena[PHYS.ASTR]Physics [physics]/Astrophysics [astro-ph]Astronomy & Astrophysics
researchProduct