0000000000481908
AUTHOR
Claudia Gutacker
Nerve growth factor and epidermal growth factor stimulate clusterin gene expression in PC12 cells
Clusterin (apolipoprotein J) is an extracellular glycoprotein that might exert functions in development, cell death and lipid transport. Clusterin gene expression is elevated at sites of tissue remodelling, such as differentiation and apoptosis; however, the signals responsible for this regulation have not been identified. We use here the clusterin gene as a model system to examine expression in PC12 cells under the control of differentiation and proliferation signals produced by nerve growth factor (NGF) and by epidermal growth factor (EGF) respectively. NGF induced clusterin mRNA, which preceded neurite outgrowth typical of neuronal differentiation. EGF also activated the clusterin mRNA, …
Multiple signal transduction pathways regulate clusterin (gp 80) gene expression in MDCK cells
ABSTRACT Clusterin (gp 80, apolipoprotein J, TRPM-2) is a widely expressed multifunctional glycoprotein. Its demonstrated and proposed functions include the transport of lipids and membrane fragments, the inhibition of the cytolytic action of the terminal complement complex and the modulation of cell—cell interactions. The expression of the gene is enhanced during tissue injury and remodelling and by hormone-withdrawal-induced apoptosis of prostate and mammary cells. We show here that, in the kidney-derived epithelial cell line MDCK, clusterin mRNA is repressed by glucocorticoids and by progesterone. Treatment with epidermal growth factor also represses clusterin gene expression in MDCK cel…
Differential regulation of the clusterin gene by Ha-ras and c-myc oncogenes and during apoptosis
Clusterin (ApoJ) is an extracellular glycoprotein expressed during processes of tissue differentiation and regression that involve programmed cell death (apoptosis). Increased clusterin expression has also been found in tumors, however, the mechanism underlying this induction is not known. Apoptotic processes in tumors could be responsible for clusterin gene activation. Alternatively, oncogenic mutations could modulate signal transduction, thereby inducing the gene. We examined the response of the rat clusterin gene to two oncogenes, Ha-ras and c-myc, in transfected Rat1 fibroblasts. While c-myc overexpression did not modify clusterin gene activity, the Ha-ras oncogene produced a seven to t…