Implicit analytic solutions for a nonlinear fractional partial differential beam equation
Abstract Analytic solutions in implicit form are derived for a nonlinear partial differential equation (PDE) with fractional derivative elements, which can model the dynamics of a deterministically excited Euler-Bernoulli beam resting on a viscoelastic foundation. Specifically, the initial-boundary value problem for the corresponding PDE is reduced to an initial value problem for a nonlinear ordinary differential equation in a Hilbert space. Next, by employing the cosine and sine families of operators, a variation of parameters representation of the solution map is introduced. Due to the presence of a nonlinear term, a local fixed point theorem is employed to prove the local existence and u…