0000000000482016

AUTHOR

Masaki Nakanishi

showing 4 related works from this author

Average/Worst-Case Gap of Quantum Query Complexities by On-Set Size

2009

This paper considers the query complexity of the functions in the family F_{N,M} of N-variable Boolean functions with onset size M, i.e., the number of inputs for which the function value is 1, where 1<= M <= 2^{N}/2 is assumed without loss of generality because of the symmetry of function values, 0 and 1. Our main results are as follows: (1) There is a super-linear gap between the average-case and worst-case quantum query complexities over F_{N,M} for a certain range of M. (2) There is no super-linear gap between the average-case and worst-case randomized query complexities over F_{N,M} for every M. (3) For every M bounded by a polynomial in N, any function in F_{N,M} has quantum que…

FOS: Computer and information sciencesQuantum PhysicsComputer Science - Computational ComplexityFOS: Physical sciencesComputational Complexity (cs.CC)Quantum Physics (quant-ph)
researchProduct

New results on classical and quantum counter automata

2019

We show that one-way quantum one-counter automaton with zero-error is more powerful than its probabilistic counterpart on promise problems. Then, we obtain a similar separation result between Las Vegas one-way probabilistic one-counter automaton and one-way deterministic one-counter automaton. We also obtain new results on classical counter automata regarding language recognition. It was conjectured that one-way probabilistic one blind-counter automata cannot recognize Kleene closure of equality language [A. Yakaryilmaz: Superiority of one-way and realtime quantum machines. RAIRO - Theor. Inf. and Applic. 46(4): 615-641 (2012)]. We show that this conjecture is false, and also show several s…

FOS: Computer and information sciencesComputer Science - Computational ComplexityQuantum PhysicsTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESTheoryofComputation_COMPUTATIONBYABSTRACTDEVICESFormal Languages and Automata Theory (cs.FL)FOS: Physical sciencesComputer Science - Formal Languages and Automata TheoryComputational Complexity (cs.CC)Quantum Physics (quant-ph)Nonlinear Sciences::Cellular Automata and Lattice GasesComputer Science::Formal Languages and Automata Theory
researchProduct

Quantum Query Complexity of Boolean Functions with Small On-Sets

2008

The main objective of this paper is to show that the quantum query complexity Q(f) of an N-bit Boolean function f is bounded by a function of a simple and natural parameter, i.e., M = |{x|f(x) = 1}| or the size of f's on-set. We prove that: (i) For $poly(N)\le M\le 2^{N^d}$ for some constant 0 < d < 1, the upper bound of Q(f) is $O(\sqrt{N\log M / \log N})$. This bound is tight, namely there is a Boolean function f such that $Q(f) = \Omega(\sqrt{N\log M / \log N})$. (ii) For the same range of M, the (also tight) lower bound of Q(f) is $\Omega(\sqrt{N})$. (iii) The average value of Q(f) is bounded from above and below by $Q(f) = O(\log M +\sqrt{N})$ and $Q(f) = \Omega (\log M/\log N+ \sqrt{N…

CombinatoricsDiscrete mathematicsComplexity indexKarp–Lipton theoremBounded functionCircuit minimization for Boolean functionsCircuit complexityUpper and lower boundsPlanarity testingBoolean conjunctive queryMathematics
researchProduct

Exact affine counter automata

2017

We introduce an affine generalization of counter automata, and analyze their ability as well as affine finite automata. Our contributions are as follows. We show that there is a language that can be recognized by exact realtime affine counter automata but by neither 1-way deterministic pushdown automata nor realtime deterministic k-counter automata. We also show that a certain promise problem, which is conjectured not to be solved by two-way quantum finite automata in polynomial time, can be solved by Las Vegas affine finite automata. Lastly, we show that how a counter helps for affine finite automata by showing that the language MANYTWINS, which is conjectured not to be recognized by affin…

FOS: Computer and information sciencesTheoryofComputation_COMPUTATIONBYABSTRACTDEVICESautomataFormal Languages and Automata Theory (cs.FL)GeneralizationComputer scienceFOS: Physical sciencesComputer Science - Formal Languages and Automata Theorycounter automataМатематика0102 computer and information sciences02 engineering and technologyComputational Complexity (cs.CC)01 natural sciencesquantum computinglcsh:QA75.5-76.95Deterministic pushdown automatonComputer Science (miscellaneous)0202 electrical engineering electronic engineering information engineeringQuantum finite automataPromise problemTime complexityDiscrete mathematicsQuantum Physicscomputational complexityFinite-state machinelcsh:MathematicsИнформатикаpushdown automatalcsh:QA1-939Nonlinear Sciences::Cellular Automata and Lattice GasesКибернетикаAutomatonComputer Science - Computational ComplexityTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGES010201 computation theory & mathematics020201 artificial intelligence & image processinglcsh:Electronic computers. Computer scienceAffine transformationaffine computingQuantum Physics (quant-ph)Computer Science::Formal Languages and Automata Theory
researchProduct