0000000000482241

AUTHOR

Spiros Papakostas

Fifteen species in one: deciphering the Brachionus plicatilis species complex (Rotifera, Monogononta) through DNA taxonomy

Understanding patterns and processes in biological diversity is a critical task given current and rapid environmental change. Such knowledge is even more essential when the taxa under consideration are important ecological and evolutionary models. One of these cases is the monogonont rotifer cryptic species complex Brachionus plicatilis, which is by far the most extensively studied group of rotifers, is widely used in aquaculture, and is known to host a large amount of unresolved diversity. Here we collate a dataset of previously available and newly generated sequences of COI and ITS1 for 1273 isolates of the B. plicatilis complex and apply three approaches in DNA taxonomy (i.e. ABGD, PTP, …

research product

Cytosine methylation patterns suggest a role of methylation in plastic and adaptive responses to temperature in European grayling (Thymallus thymallus) populations

Temperature is a key environmental parameter affecting both the phenotypes and distributions of organisms, particularly ectotherms. Rapid organismal responses to thermal environmental changes have been described for several ectotherms; however, the underlying molecular mechanisms often remain unclear. Here, we studied whole genome cytosine methylation patterns of European grayling (Thymallus thymallus) embryos from five populations with contemporary adaptations of early life history traits at either 'colder' or 'warmer' spawning grounds. We reared fish embryos in a common garden experiment using two temperatures that resembled the 'colder' and 'warmer' conditions of the natal natural enviro…

research product

Cytosine methylation patterns suggest a role of methylation in plastic and adaptive responses to temperature in European grayling (Thymallus thymallus) populations

Temperature is a key environmental parameter affecting both the phenotypes and distributions of organisms, particularly ectotherms. Rapid organismal responses to thermal environmental changes have been described for several ectotherms; however, the underlying molecular mechanisms often remain unclear. Here, we studied whole genome cytosine methylation patterns of European grayling (Thymallus thymallus) embryos from five populations with contemporary adaptations of early life history traits at either ‘colder’ or ‘warmer’ spawning grounds. We reared fish embryos in a common garden experiment using two temperatures that resembled the ‘colder’ and ‘warmer’ conditions of the natal natural enviro…

research product