0000000000482282

AUTHOR

Lorenz Niewisch

showing 4 related works from this author

Superheavy element flerovium (element 114) is a volatile metal.

2014

The electron shell structure of superheavy elements, i.e., elements with atomic number Z ≥ 104, is influenced by strong relativistic effects caused by the high Z. Early atomic calculations on element 112 (copernicium, Cn) and element 114 (flerovium, Fl) having closed and quasi-closed electron shell configurations of 6d(10)7s(2) and 6d(10)7s(2)7p1/2(2), respectively, predicted them to be noble-gas-like due to very strong relativistic effects on the 7s and 7p1/2 valence orbitals. Recent fully relativistic calculations studying Cn and Fl in different environments suggest them to be less reactive compared to their lighter homologues in the groups, but still exhibiting a metallic character. Expe…

Physicsgas chemistryValence (chemistry)ta114Electron shellchemistry.chemical_elementelement 114Inorganic ChemistryFleroviumsuperheavy elementsPhysisorptionchemistryAtomic orbitalChemical physicsSubatomic PhysicsAtomic numberPhysical and Theoretical ChemistryAtomic physicsRelativistic quantum chemistryCoperniciumInorganic chemistry
researchProduct

Rapid Synthesis of Radioactive Transition-Metal Carbonyl Complexes at Ambient Conditions

2012

Carbonyl complexes of radioactive transition metals can be easily synthesized with high yields by stopping nuclear fission or fusion products in a gas volume containing CO. Here, we focus on Mo, W, and Os complexes. The reaction takes place at pressures of around 1 bar at room temperature, i.e., at conditions that are easy to accommodate. The formed complexes are highly volatile. They can thus be transported within a gas stream without major losses to setups for their further investigation or direct use. The rapid synthesis holds promise for radiochemical purposes and will be useful for studying, e.g., chemical properties of superheavy elements.

FusionChemistryInorganic chemistrySuperheavy Elements010402 general chemistry010403 inorganic & nuclear chemistry01 natural sciences7. Clean energy0104 chemical sciencesInorganic ChemistryTransition metalNuclear fissionOrganic chemistryPhysical and Theoretical ChemistryInorganic Chemistry
researchProduct

Electrodeposition methods in superheavy element chemistry

2008

To prepare electrodeposition experiments with superheavy elements (SHE), their homologs were investigated. In the experiments, various electrode materials and electrolytes were used. Critical potentials (E crit ) where the electrodeposition starts and potentials for the deposition of 50% of the atoms in solution (E 50% ) were determined. Underpotential deposition was observed in most cases. An electrolytic cell for a fast electrochemical deposition was developed and the time for the deposition of 50% of the atoms in solution (t 50% ) was determined. Short lived α-emitting isotopes were produced at Gesellschaft fur Schwerionenforschung (GSI), Darmstadt, transferred to the aqueous phase with …

ChemistryElectrolytic cellInorganic chemistryKineticsAqueous two-phase systemCoupling (piping)ElectrolytePhysical and Theoretical ChemistryElectrochemistryUnderpotential depositionDeposition (chemistry)Radiochimica Acta
researchProduct

In-situ formation, thermal decomposition, and adsorption studies of transition metal carbonyl complexes with short-lived radioisotopes

2014

Abstract We report on the in-situ synthesis of metal carbonyl complexes with short-lived isotopes of transition metals. Complexes of molybdenum, technetium, ruthenium and rhodium were synthesized by thermalisation of products of neutron-induced fission of 249Cf in a carbon monoxide-nitrogen mixture. Complexes of tungsten, rhenium, osmium, and iridium were synthesized by thermalizing short-lived isotopes produced in 24Mg-induced fusion evaporation reactions in a carbon monoxide containing atmosphere. The chemical reactions took place at ambient temperature and pressure conditions. The complexes were rapidly transported in a gas stream to collection setups or gas phase chromatography devices.…

In situThermal decomposition02 engineering and technologyCrystal structure010402 general chemistry021001 nanoscience & nanotechnologyPhotochemistry01 natural sciencesBond-dissociation energy0104 chemical scienceschemistry.chemical_compoundAdsorptionTransition metalchemistry540 Chemistry570 Life sciences; biologyThermal stabilityPhysical and Theoretical Chemistry0210 nano-technologyChromium hexacarbonylNuclear chemistryRadiochimica Acta
researchProduct