Influence of thickness and interface on the low-temperature enhancement of the spin Seebeck effect in YIG films
The temperature-dependent longitudinal spin Seebeck effect (LSSE) in heavy metal (HM)/Y_{3}Fe_{5}O_{12} (YIG) hybrid structures is investigated as a function of YIG film thickness, magnetic field strength, and different HM detection materials. The LSSE signal shows a large enhancement with reductions in temperature, leading to a pronounced peak at low temperatures. We find that the LSSE peak temperature strongly depends on the film thickness as well as on the magnetic field. Our result can be well explained in the framework of magnon-driven LSSE by taking into account the temperature-dependent effective propagation length of thermally excited magnons in the bulk of the material. We further …