6533b821fe1ef96bd127b001

RESEARCH PRODUCT

Influence of thickness and interface on the low-temperature enhancement of the spin Seebeck effect in YIG films

Gerhard JakobJoel CramerEr-jia GuoEr-jia GuoMathias KläuiAndreas KehlbergerCiaran FergusonDonald A. Maclaren

subject

Materials scienceCondensed matter physicsbusiness.industryPhysicsQC1-999General Physics and Astronomy02 engineering and technology021001 nanoscience & nanotechnology01 natural sciencesComputer Science::OtherCondensed Matter::Materials ScienceTemperature gradientSemiconductorCondensed Matter::Superconductivity0103 physical sciencesThermoelectric effectCondensed Matter::Strongly Correlated ElectronsCurrent (fluid)010306 general physics0210 nano-technologyMaterial propertiesbusinessSpin-½

description

The temperature-dependent longitudinal spin Seebeck effect (LSSE) in heavy metal (HM)/Y_{3}Fe_{5}O_{12} (YIG) hybrid structures is investigated as a function of YIG film thickness, magnetic field strength, and different HM detection materials. The LSSE signal shows a large enhancement with reductions in temperature, leading to a pronounced peak at low temperatures. We find that the LSSE peak temperature strongly depends on the film thickness as well as on the magnetic field. Our result can be well explained in the framework of magnon-driven LSSE by taking into account the temperature-dependent effective propagation length of thermally excited magnons in the bulk of the material. We further demonstrate that the LSSE peak is significantly shifted by changing the interface coupling to an adjacent detection layer, revealing a more complex behavior beyond the currently discussed bulk effect. By direct microscopic imaging of the interface, we correlate the observed temperature dependence with the interface structure between the YIG and the adjacent metal layer. Our results highlight the role of interface effects on the temperature-dependent LSSE in HM/YIG system, suggesting that the temperature-dependent spin current transparency strikingly relies on the interface conditions.

https://eprints.gla.ac.uk/120870/1/120870.pdf