0000000000482990

AUTHOR

Fentaw Abegaz

showing 2 related works from this author

Sparse relative risk regression models

2020

Summary Clinical studies where patients are routinely screened for many genomic features are becoming more routine. In principle, this holds the promise of being able to find genomic signatures for a particular disease. In particular, cancer survival is thought to be closely linked to the genomic constitution of the tumor. Discovering such signatures will be useful in the diagnosis of the patient, may be used for treatment decisions and, perhaps, even the development of new treatments. However, genomic data are typically noisy and high-dimensional, not rarely outstripping the number of patients included in the study. Regularized survival models have been proposed to deal with such scenarios…

Statistics and ProbabilityClustering high-dimensional dataComputer sciencedgLARSInferenceScale (descriptive set theory)BiostatisticsMachine learningcomputer.software_genreRisk Assessment01 natural sciencesRegularization (mathematics)Relative risk regression model010104 statistics & probability03 medical and health sciencesNeoplasmsCovariateHumansComputer Simulation0101 mathematicsOnline Only ArticlesSurvival analysis030304 developmental biology0303 health sciencesModels Statisticalbusiness.industryLeast-angle regressionRegression analysisGeneral MedicineSurvival AnalysisHigh-dimensional dataGene expression dataRegression AnalysisArtificial intelligenceStatistics Probability and UncertaintySettore SECS-S/01 - StatisticabusinessSparsitycomputerBiostatistics
researchProduct

Using Differential Geometry for Sparse High-Dimensional Risk Regression Models

2023

With the introduction of high-throughput technologies in clinical and epidemiological studies, the need for inferential tools that are able to deal with fat data-structures, i.e., relatively small number of observations compared to the number of features, is becoming more prominent. In this paper we propose an extension of the dgLARS method to high-dimensional risk regression models. The main idea of the proposed method is to use the differential geometric structure of the partial likelihood function in order to select the optimal subset of covariates.

high-dimensional datasparsitydgLARSrisk regression modelSettore SECS-S/01 - Statisticasurvival analysis
researchProduct