0000000000482990
AUTHOR
Fentaw Abegaz
Sparse relative risk regression models
Summary Clinical studies where patients are routinely screened for many genomic features are becoming more routine. In principle, this holds the promise of being able to find genomic signatures for a particular disease. In particular, cancer survival is thought to be closely linked to the genomic constitution of the tumor. Discovering such signatures will be useful in the diagnosis of the patient, may be used for treatment decisions and, perhaps, even the development of new treatments. However, genomic data are typically noisy and high-dimensional, not rarely outstripping the number of patients included in the study. Regularized survival models have been proposed to deal with such scenarios…
Using Differential Geometry for Sparse High-Dimensional Risk Regression Models
With the introduction of high-throughput technologies in clinical and epidemiological studies, the need for inferential tools that are able to deal with fat data-structures, i.e., relatively small number of observations compared to the number of features, is becoming more prominent. In this paper we propose an extension of the dgLARS method to high-dimensional risk regression models. The main idea of the proposed method is to use the differential geometric structure of the partial likelihood function in order to select the optimal subset of covariates.