0000000000484153
AUTHOR
E Lo Gerfo
Cerebellar magnetic stimulation decreases levodopa-induced dyskinesias in Parkinson disease
BACKGROUND: The neural mechanisms and the circuitry involved in levodopa-induced dyskinesia (LID) are still partially obscure. LID can be considered the consequence of an abnormal pattern or code of activity that originates and is conveyed from the basal ganglia to the thalamus and the cortical motor areas. However, not only striatothalamocortical motor circuits but also other interconnected pathways could be implicated in its pathogenesis. METHODS: In a series of experiments, we applied repetitive transcranial magnetic stimulation (rTMS) over the lateral cerebellum in a group of patients with advanced Parkinson disease, to investigate whether modulation of cerebellothalamocortical circuits…
TMS activation of interhemispheric pathways between the posterior parietal cortex and the contralateral motor cortex
Using a twin coil transcranial magnetic stimulation (tc-TMS) approach we have previously demonstrated that facilitation may be detected in the primary motor cortex (M1) following stimulation over the ipsilateral caudal intraparietal sulcus (cIPS). Here we tested the interhemispheric interactions between the IPS and the contralateral motor cortex (M1). We found that conditioning the right cIPS facilitated contralateral M1 when the conditioning stimulus had an intensity of 90% resting motor threshold (RMT) but not at 70% or 110% RMT. Facilitation was maximal when the interstimulus interval (ISI) between cIPS and M1 was 6 or 12 ms. These facilitatory effects were mediated by interactions with …