0000000000484991
AUTHOR
Darya Alizadeh
PIAS1 and STAT-3 impair the tumoricidal potential of IFN-γ-stimulated mouse dendritic cells generated with IL-15
Primarily defined by their antigen-presenting property, dendritic cells (DCs) are being implemented as cancer vaccines in immunotherapeutic interventions. DCs can also function as direct tumor cell killers. How DC cytotoxic activity can be efficiently harnessed and the mechanisms controlling this nonconventional property are not fully understood. We report here that the tumoricidal potential of mouse DCs generated from myeloid precursors with GM-CSF and IL-15 (IL-15 DCs) can be triggered with the Toll-like receptor (TLR) 4 ligand lipopolysaccharide to a similar extent compared with that of their counterparts, conventionally generated with IL-4 (IL-4 DCs). The mechanism of tumor cell killing…
Abstract 4740: Doxorubicin eliminates tumor-induced myeloid-derived suppressor cells and enhances T-helper lymphocyte-based immunotherapy in a murine breast cancer model.
Abstract Myeloid-derived suppressor cells (MDSC) represent a heterogeneous population of cells equipped with the ability to inhibit T lymphocyte-mediated immune responses. A significant increase in the number of MDSC has been reported in the blood, secondary lymphoid organs and tumor beds in tumor-bearing animals and in patients with many types of cancers. MDSC frequency correlates with the disease stage and prognosis. These cells impair CD8+ cytotoxic T lymphocyte (CTL)-mediated anti-tumor immunity by different overlapping mechanisms such as reactive oxygen species or immunosuppressive cytokine production. Importantly, MDSC elimination or inactivation substantially enhances the efficiency …