0000000000485066

AUTHOR

Camino Fernández-aláez

A new tool for the assessment of severe anthropogenic eutrophication in small shallow water bodies

Abstract Unlike in deep stratified lakes, the assessment of eutrophication in shallow aquatic systems (i.e., wetlands, marshes, ponds) should be based on the interaction between water and sediment. The availability of P to primary producers is naturally higher in shallow systems, because the sediment plays an active part via adsorption, precipitation and release processes. Thus, many wetlands in protected areas are naturally eutrophic and have a high trophic status due to intrinsic features and thus, display a high concentration of total-P in the water without necessarily implying pollution or poor quality. We have provided a diagnostic tool based on the chemical equilibrium of dissolved re…

research product

Factors controlling hydrochemical and trophic state variables in 86 shallow lakes in Europe

In order to disentangle the causes of variations in water chemistry among European shallow lakes, we performed standardised sampling programs in 86 lakes along a latitudinal gradient from southern Spain to northern Sweden. Lakes with an area of 0.1 to 27 000 ha and mean depth of 0.4–5.6 m located in low to high altitudes were investigated within the EC project ECOFRAME 1–4 times during June–October 2000–2001. Several variables like conductivity, alkalinity, abundance of submerged plants, concentrations of suspended solids, total nitrogen and phosphorus were latitude-dependent decreasing from south to north. Secchi depth, concentrations of total nitrogen, total phosphorus, suspended solids, …

research product

Responses of phytoplankton to fish predation and nutrient loading in shallow lakes: a pan-European mesocosm experiment

1. The impacts of nutrients (phosphorus and nitrogen) and planktivorous fish on phytoplankton composition and biomass were studied in six shallow, macrophyte-dominated lakes across Europe using mesocosm experiments. 2. Phytoplankton biomass was more influenced by nutrients than by densities of planktivorous fish. Nutrient addition resulted in increased algal biomass at all locations. In some experiments, a decrease was noted at the highest nutrient loadings, corresponding to added concentrations of 1 mg L1 P and 10 mg L1 N. 3. Chlorophyll a was a more precise parameter to quantify phytoplankton biomass than algal biovolume, with lower within-treatment variability. 4. Higher densities of pla…

research product