0000000000485142
AUTHOR
Adriana Romero
Shared feature representations of LiDAR and optical images: Trading sparsity for semantic discrimination
This paper studies the level of complementary information conveyed by extremely high resolution LiDAR and optical images. We pursue this goal following an indirect approach via unsupervised spatial-spectral feature extraction. We used a recently presented unsupervised convolutional neural network trained to enforce both population and lifetime spar-sity in the feature representation. We derived independent and joint feature representations, and analyzed the sparsity scores and the discriminative power. Interestingly, the obtained results revealed that the RGB+LiDAR representation is no longer sparse, and the derived basis functions merge color and elevation yielding a set of more expressive…
Unsupervised deep feature extraction of hyperspectral images
This paper presents an effective unsupervised sparse feature learning algorithm to train deep convolutional networks on hyperspectral images. Deep convolutional hierarchical representations are learned and then used for pixel classification. Features in lower layers present less abstract representations of data, while higher layers represent more abstract and complex characteristics. We successfully illustrate the performance of the extracted representations in a challenging AVIRIS hyperspectral image classification problem, compared to standard dimensionality reduction methods like principal component analysis (PCA) and its kernel counterpart (kPCA). The proposed method largely outperforms…