0000000000485178
AUTHOR
F. De Carlo
A completely automated CAD system for mass detection in a large mammographic database
Mass localization plays a crucial role in computer-aided detection (CAD) systems for the classification of suspicious regions in mammograms. In this article we present a completely automated classification system for the detection of masses in digitized mammographic images. The tool system we discuss consists in three processing levels: (a) Image segmentation for the localization of regions of interest (ROIs). This step relies on an iterative dynamical threshold algorithm able to select iso-intensity closed contours around gray level maxima of the mammogram. (b) ROI characterization by means of textural features computed from the gray tone spatial dependence matrix (GTSDM), containing secon…
Detection and classification of microcalcifications clusters in digitized mammograms
In the present paper we discuss a new approach for the detection of microcalcification clusters, based on neural networks and developed as part of the MAGIC-5 project, an INFN-funded program which aims at the development and implementation of CAD algorithms in a GRID-based distributed environment. The proposed approach has as its roots the desire to maximize the rejection of background during the analytical pre-processing stage, in order to train and test the neural network with as clean as possible a sample and therefore maximize its performance. The algorithm is composed of three modules: the image pre-processing, the feature extraction component and the Backpropagation Neural Network mod…
Mammogram Segmentation by Contour Searching and Mass Lesions Classification with Neural Network
The mammography is the most effective procedure for an early diagnosis of the breast cancer. In this paper, an algorithm for detecting masses in mammographic images will be presented. The database consists of 3762 digital images acquired in several hospitals belonging to the MAGIC-5 collaboration (Medical Applications on a Grid Infrastructure Connection). A reduction of the whole image's area under investigation is achieved through a segmentation process, by means of a ROI Hunter algorithm, without loss of meaningful information. In the following classification step, feature extraction plays a fundamental role: some features give geometrical information, other ones provide shape parameters.…
Dissimilarity Application for Medical Imaging Classification
In the traditional way of learning from examples of objects the classifiers are built in a feature space. However, alternative ways can be found by constructing decision rules on dissimilarity (distance) representations. In such a recognition process a new object is described by its distances to (a subset of) die training samples. The use of the dissimilarities is especially of interest when features are difficult to obtain or when they have a little discriminative power. Purpose of this work is the development of an automatic classification system which could be useful for radiologists in the investigation of breast cancer. The software has been designed in the framework of the MAGIC-5 col…
MAGIC-5: an Italian mammographic database of digitised images for research
The implementation of a database of digitised mammograms is discussed. The digitised images were collected beginning in 1999 by a community of physicists in collaboration with radiologists in several Italian hospitals as a first step in developing and implementing a computer-aided detection (CAD) system. All 3,369 mammograms were collected from 967 patients and classified according to lesion type and morphology, breast tissue and pathology type. A dedicated graphical user interface was developed to visualise and process mammograms to support the medical diagnosis directly on a high-resolution screen. The database has been the starting point for developing other medical imaging applications,…
A CAD system for nodule detection in low-dose lung CTs based on region growing and a new active contour model
A computer-aided detection (CAD) system for the selection of lung nodules in computer tomography (CT) images is presented. The system is based on region growing (RG) algorithms and a new active contour model (ACM), implementing a local convex hull, able to draw the correct contour of the lung parenchyma and to include the pleural nodules. The CAD consists of three steps: (1) the lung parenchymal volume is segmented by means of a RG algorithm; the pleural nodules are included through the new ACM technique; (2) a RG algorithm is iteratively applied to the previously segmented volume in order to detect the candidate nodules; (3) a double-threshold cut and a neural network are applied to reduce…