0000000000485325
AUTHOR
Lawrence W. Dobrucki
N1-methylnicotinamide improves endothelial dysfunction in human blood vessels
Modification of DNA structure by reactive nitrogen species as a result of 2-methoxyestradiol–induced neuronal nitric oxide synthase uncoupling in metastatic osteosarcoma cells
Abstract 2-methoxyestradiol (2-ME) is a physiological anticancer compound, metabolite of 17β-estradiol. Previously, our group evidenced that from mechanistic point of view one of anticancer mechanisms of action of 2-ME is specific induction and nuclear hijacking of neuronal nitric oxide synthase (nNOS), resulting in local generation of nitro-oxidative stress and finally, cancer cell death. The current study aims to establish the substantial mechanism of generation of reactive nitrogen species by 2-ME. We further achieved to identify the specific reactive nitrogen species involved in DNA-damaging mechanism of 2-ME. The study was performed using metastatic osteosarcoma 143B cells. We detected…
Nitric oxide production and endothelium-dependent vasorelaxation ameliorated by N1-methylnicotinamide in human blood vessels.
N 1 -methylnicotinamide (MNA + ) has until recently been thought to be a biologically inactive product of nicotinamide metabolism in the pyridine nucleotides pathway. However, the latest observations imply that MNA + may exert antithrombotic and anti-inflammatory effects through direct action on the endothelium. We examined both in vivo and in vitro whether the compound might induce vasorelaxation in human blood vessels through the improvement of nitric oxide (NO) bioavailability and a reduction of oxidative stress mediated by endothelial NO synthase (eNOS) function. MNA + treatment (100 mg/m 2 orally) in healthy normocholesterolemic and hypercholesterolemic subjects increased the l-argini…