0000000000486121

AUTHOR

Maria-rosario Luquin

0000-0002-5594-1794

showing 4 related works from this author

Ultrastructure of the subventricular zone in Macaca fascicularis and evidence of a mouse-like migratory stream.

2009

Recent publications have shown that the lateral wall of the lateral ventricles in the Macaca fascicularis brain, in particular the subventricular zone (SVZ), contains neural stem cells throughout adulthood that migrate through a migratory pathway (RMS) to the olfactory bulb (OB). To date, a detailed and systematic cytoarchitectural and ultrastructural study of the monkey SVZ and RMS has not been done. We found that the organization of the SVZ was similar to that of humans, with the ependymal layer surrounding the lateral ventricles, a hypocellular GAP layer formed by astrocytic and ependymal expansions, and the astrocyte ribbon, composed of astrocytic bodies. We found no cells corresponding…

MaleEpendymal CellRostral migratory streamSubventricular zoneBiologyLateral ventriclesCell MovementEpendymaLateral VentriclesmedicineAnimalsNeuronsGeneral NeuroscienceNeurogenesisGTPase-Activating ProteinsImmunohistochemistryOlfactory BulbNeural stem cellOlfactory bulbMacaca fascicularisMicroscopy Electronmedicine.anatomical_structureKi-67 Antigennervous systemAstrocytesNeuroscienceAstrocyteThe Journal of comparative neurology
researchProduct

Thymidine analogs are transferred from prelabeled donor to host cells in the central nervous system after transplantation: a word of caution

2006

Thymidine analogs, including bromodeoxyuridine, chlorodeoxyuridine, iododeoxyuridine, and tritiated thymidine, label dividing cells by incorporating into DNA during S phase of cell division and are widely employed to identify cells transplanted into the central nervous system. However, the potential for transfer of thymidine analogs from grafted cells to dividing host cells has not been thoroughly tested. We here demonstrate that graft-derived thymidine analogs can become incorporated into host neural precursors and glia. Large numbers of labeled neurons and glia were found 3-12 weeks after transplantation of thymidine analog-labeled live stem cells, suggesting differentiation of grafted ce…

Central Nervous SystemCell divisionCentral nervous systemBiological Transport ActiveMice TransgenicIn Vitro TechniquesBiologyRats Sprague-Dawleychemistry.chemical_compoundMicePregnancyRats Inbred SHRmedicineAnimalsCell ProliferationNeuronsCell growthBrainCell BiologyMolecular biologyRatsTransplantationmedicine.anatomical_structurechemistryAnimals NewbornBromodeoxyuridineMolecular MedicineNeurogliaFemaleStem cellThymidineNeurogliaBromodeoxyuridineDevelopmental BiologyStem Cell TransplantationThymidine
researchProduct

The Adult Macaque Spinal Cord Central Canal Zone Contains Proliferative Cells And Closely Resembles The Human

2014

The persistence of proliferative cells, which could correspond to progenitor populations or potential cells of origin for tumors, has been extensively studied in the adult mammalian forebrain, including human and nonhuman primates. Proliferating cells have been found along the entire ventricular system, including around the central canal, of rodents, but little is known about the primate spinal cord. Here we describe the central canal cellular composition of the Old World primate Macaca fascicularis via scanning and transmission electron microscopy and immunohistochemistry and identify central canal proliferating cells with Ki67 and newly generated cells with bromodeoxyuridine incorporation…

Pathologymedicine.medical_specialtyEpendymal CellbiologyGeneral NeuroscienceAnatomyVentricular systemSpinal cordMacaqueNeural stem cellmedicine.anatomical_structurebiology.animalForebrainmedicineIntermediate filamentEpendymaJournal of Comparative Neurology
researchProduct

Sox-2 Positive Neural Progenitors in the Primate Striatum Undergo Dynamic Changes after Dopamine Denervation.

2013

The existence of endogenous neural progenitors in the nigrostriatal system could represent a powerful tool for restorative therapies in Parkinson's disease. Sox-2 is a transcription factor expressed in pluripotent and adult stem cells, including neural progenitors. In the adult brain Sox-2 is expressed in the neurogenic niches. There is also widespread expression of Sox-2 in other brain regions, although the neurogenic potential outside the niches is uncertain. Here, we analyzed the presence of Sox-2(+) cells in the adult primate (Macaca fascicularis) brain in naïve animals (N = 3) and in animals exposed to systemic administration of 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine to render th…

MalePathologyDopamineFluorescent Antibody Techniquelcsh:MedicineDopaminaStriatumchemistry.chemical_compoundNeural Stem CellsNeurobiology of Disease and RegenerationSox-2 PositiveNeurocièncieslcsh:Scienceeducation.field_of_studyMultidisciplinaryMPTPStem CellsCell DifferentiationNeurochemistryNeurodegenerative DiseasesParkinson DiseaseAnimal ModelsDopamine DenervationDenervationSubstantia NigraAdult Stem CellsNeurologyembryonic structuresMedicineNeural ProgenitorsCalretininNeurochemicalsMacaqueAdult stem cellmedicine.drugResearch Articlemedicine.medical_specialtyendocrine systemNeurogenesisPopulationSubstantia nigraModel OrganismsDevelopmental NeuroscienceDopamineInternal medicinemedicineAnimalsProgenitor celleducationBiologyurogenital systemSOXB1 Transcription Factorslcsh:RCorrectionCorpus StriatumMacaca fascicularisEndocrinologychemistrynervous systemlcsh:QDevelopmental BiologyNeurosciencePLoS ONE
researchProduct