0000000000486263

AUTHOR

D. G. Austing

Electronic and magnetic structure of artificial atoms

The concept of shell structure has been found useful in the description of semiconductor quantum dots, which today can be made so small that they contain less than 20 electrons. We review the experimental discovery of magic numbers and spin alignment following Hund’s rules in the addition spectra of vertical quantum dots, and show that these results compare well to model calculations within spin density functional theory. We further discuss the occurrence of spin density waves in quantum dots and quantum wires. For deformable two-dimensional quantum dots (for example, jellium clusters on surfaces), we study the interplay between Hund’s rules and Jahn–Teller deformations and investigate the …

research product

Ellipsoidal deformation of vertical quantum dots

Addition energy spectra at 0 T of circular and ellipsoidally deformed few-electron vertical quantum dots are measured and compared to results of model calculations within spin-density functional theory. Because of the rotational symmetry of the lateral harmonic confining potential, circular dots show a pronounced shell structure. With the lifting of the single- particle level degeneracies, even a small deformation is found to radically alter the shell structure leading to significant modifications in the addition energy spectra. Breaking the circular symmetry with deformation also induces changes in the total spin. This "piezo-magnetic" behavior of quantum dots is discussed, and the additio…

research product