0000000000489247
AUTHOR
Radu Cazan
Laser cooling of externally produced Mg ions in a Penning trap for sympathetic cooling of highly charged ions
We have performed laser cooling of Mg ions confined in a Penning trap. The externally produced ions were captured in flight, stored and laser cooled. Laser-induced fluorescence was observed perpendicular to the cooling laser axis. Optical detection down to the single ion level together with electronic detection of the ion oscillations inside the Penning trap have been used to acquire information on the ion storage time, ion number and ion temperature. Evidence for formation of ion crystals has been observed. These investigations are an important prerequisite for sympathetic cooling of simultaneously stored highly-charged ions and precision laser spectroscopy of forbidden transitions in thes…
SpecTrap: precision spectroscopy of highly charged ions—status and prospects
We present the status of the SpecTrap experiment currently being commissioned in the framework of the HITRAP project at GSI, Darmstadt, Germany. SpecTrap is a cryogenic Penning trap experiment dedicated to high-accuracy laser spectroscopy of highly charged ions (HCI) near rest. Determination of fine structure and hyperfine structure splittings in HCI with an expected relative spectral resolution of 10−7 will offer the possibility to test quantum electrodynamics in strong fields with unprecedented accuracy. Recently, we have demonstrated trapping and laser Doppler cooling of singly charged magnesium ions in SpecTrap. We report on the status of the experimental apparatus, measurements and pre…
On the Secondary Discharge of an Atmospheric-Pressure Pulsed DBD in He with Impurities
The secondary discharge was induced at the end of a slow-falling voltage flank, when a semisine monopolar pulse voltage excites the dielectric-barrier discharge. Formation and properties of the secondary discharge with respect to different dielectric materials such as glass, ceramic, and polyethylene theraphtalate were studied. The tunable diode laser absorption spectrometry (at 777.194 nm) was used to analyze the time-space distribution of the density of the atomic oxygen in metastable state (35S2 rarr 35P3) in addition to both discharge voltage and discharge current versus time. The secondary discharge is always formed, and its amplitude, as well as the amplitude of the main discharge, de…