0000000000489328

AUTHOR

R. Plunkett

Physics at a neutrino factory

In response to the growing interest in building a Neutrino Factory to produce high intensity beams of electron- and muon-neutrinos and antineutrinos, in October 1999 the Fermilab Directorate initiated two six-month studies. The first study, organized by N. Holtkamp and D. Finley, was to investigate the technical feasibility of an intense neutrino source based on a muon storage ring. This design study has produced a report in which the basic conclusion is that a Neutrino Factory is technically feasible, although it requires an aggressive R&D program. The second study, which is the subject of this report, was to explore the physics potential of a Neutrino Factory as a function of the muon…

research product

Light sterile neutrino sensitivity at the nuSTORM facility

A facility that can deliver beams of electron and muon neutrinos from the decay of a stored muon beam has the potential to unambiguously resolve the issue of the evidence for light sterile neutrinos that arises in short-baseline neutrino oscillation experiments and from estimates of the effective number of neutrino flavors from fits to cosmological data. In this paper, we show that the nuSTORM facility, with stored muons of 3.8 GeV/c $\pm$ 10%, will be able to carry out a conclusive muon neutrino appearance search for sterile neutrinos and test the LSND and MiniBooNE experimental signals with 10$\sigma$ sensitivity, even assuming conservative estimates for the systematic uncertainties. This…

research product

Direct measurement of the W boson width

We present a direct measurement of the width of the W boson using the shape of the transverse mass distribution of W->enu candidates selected in 1 fb-1 of data collected with the D0 detector at the Fermilab Tevatron collider in ppbar collisions at sqrt{s}=1.96 TeV. We use the same methods and data sample that were used for our recently published W boson mass measurement, except for the modeling of the recoil, which is done with a new method based on a recoil library. Our result, 2.028 +- 0.072 GeV, is in agreement with the predictions of the standard model.

research product