0000000000489338

AUTHOR

P. Spentzouris

showing 7 related works from this author

Measurement of neutrino-induced charged-current charged pion production cross sections on mineral oil atEν∼1  GeV

2011

Using a high-statistics, high-purity sample of {nu}{sub {mu}-}induced charged current, charged pion events in mineral oil (CH{sub 2}), MiniBooNE reports a collection of interaction cross sections for this process. This includes measurements of the CC{pi}{sup +} cross section as a function of neutrino energy, as well as flux-averaged single- and double-differential cross sections of the energy and direction of both the final-state muon and pion. In addition, each of the single-differential cross sections are extracted as a function of neutrino energy to decouple the shape of the MiniBooNE energy spectrum from the results. In many cases, these cross sections are the first time such quantities…

MiniBooNENuclear physicsPhysicsNuclear and High Energy PhysicsParticle physicsMuonPionMesonHigh Energy Physics::ExperimentNeutrinoEnergy sourceCharged currentLeptonPhysical Review D
researchProduct

Measurement of the Ratio of theνμCharged-Current Single-Pion Production to Quasielastic Scattering with a 0.8 GeV Neutrino Beam on Mineral Oil

2009

Charged current single pion production (CC{pi}{sup +}) and charged current quasi-elastic scattering (CCQE) are the most abundant interaction types for neutrinos at energies around 1 GeV, a region of great interest to oscillation experiments. The cross-sections for these processes, however, are not well understood in this energy range. This dissertation presents a measurement of the ratio of CC{pi}{sup +} to CCQE cross-sections for muon neutrinos on mineral oil (CH{sub 2}) in the MiniBooNE experiment. The measurement is presented here both with and without corrections for hadronic re-interactions in the target nucleus and is given as a function of neutrino energy in the range 0.4 GeV < E{sub…

Nuclear physicsPhysicsMiniBooNEParticle physicsMuonPionHadronGeneral Physics and AstronomyHigh Energy Physics::ExperimentNeutrinoEnergy sourceCharged currentLeptonPhysical Review Letters
researchProduct

Search for Core-Collapse Supernovae using the MiniBooNE Neutrino Detector

2009

We present a search for core-collapse supernovae in the Milky Way galaxy, using the MiniBooNE neutrino detector. No evidence is found for core-collapse supernovae occurring in our Galaxy in the period from December 14, 2004 to July 31, 2008, corresponding to 98% live time for collection. We set a limit on the core-collapse supernova rate out to a distance of 13.4 kpc to be less than 0.69 supernovae per year at 90% C. L.

High Energy Astrophysical Phenomena (astro-ph.HE)PhysicsNuclear and High Energy PhysicsResearch Groups and Centres\Physics\Low Temperature PhysicsFaculty of Science\PhysicsMilky WayAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesAstronomyAstrophysicsAstrophysics::Cosmology and Extragalactic AstrophysicsGalaxyMiniBooNESupernovaNeutrino detectorGravitational collapseHigh Energy Physics::ExperimentVariable starNeutrinoAstrophysics - High Energy Astrophysical PhenomenaAstrophysics::Galaxy Astrophysics
researchProduct

Search for Muon Neutrino and Antineutrino Disappearance in MiniBooNE

2009

The MiniBooNE Collaboration reports a search for nu(mu) and nu(mu) disappearance in the Delta m(2) region of 0.5-40 eV(2). These measurements are important for constraining models with extra types of neutrinos, extra dimensions, and CPT violation. Fits to the shape of the nu(mu) and nu(mu) energy spectra reveal no evidence for disappearance at the 90% confidence level (C.L.) in either mode. The test of nu(mu) disappearance probes a region below Delta m(2)=40 eV(2) never explored before.

PhysicsAntiparticleParticle physicsGeneral Physics and AstronomyFOS: Physical sciencesElementary particleHigh Energy Physics - ExperimentMiniBooNEMassless particleNuclear physicsHigh Energy Physics - Experiment (hep-ex)AntimatterNeutrinoEnergy (signal processing)Lepton
researchProduct

Study of the leptonic decays of the Z0 boson

1990

Measurements are presented of the cross section ratios Rℓ = σℓ(e+e-→ℓ+ℓ -)/σhh(e+e-→hadrons) for ℓ = e, μ and τ using data taken from a scan around the Z0. The results are Re = (5.09±0.32±0.18)%, Rμ = (4.96±0.35±0.17)% and Rτ,=(4.72±0.38± 0.29)% where, for the ratio Re, the t-channel contribution has been subtracted. These results are consistent with the hypothesis of lepton universality and test this hypothesis at the energy scale s ∼ 8300 GeV2. The absolute cross sections σℓ(e+e-→ℓ +ℓ-) have also been measured. From the cross sections the leptonic partial widths Γe = (83.2±3.0±2.4) MeV, (ΓeΓμ) 1/2=(84.6±3.0±2.4) MeV and (ΓeΓτ) 1/2=(82.6±3.3±3.2) MeV have been extracted. Assuming lepton un…

PhysicsNuclear and High Energy PhysicsParticle physics[PHYS.HEXP] Physics [physics]/High Energy Physics - Experiment [hep-ex]010308 nuclear & particles physicsElectron–positron annihilationHadronWidth ratio01 natural sciences7. Clean energyNuclear physics0103 physical sciencesPhysique des particules élémentaires[PHYS.HEXP]Physics [physics]/High Energy Physics - Experiment [hep-ex]Neutrino010306 general physicsParticle Physics - ExperimentLeptonBosonPhysics Letters B
researchProduct

Unexplained Excess of Electronlike Events from a 1-GeV Neutrino Beam

2009

The MiniBooNE Collaboration observes unexplained electronlike events in the reconstructed neutrino energy range from 200 to 475 MeV. With 6.46 x 10(20) protons on target, 544 electronlike events are observed in this energy range, compared to an expectation of 415.2 +/- 43.4 events, corresponding to an excess of 128.8 +/- 20.4 +/- 38.3 events. The shape of the excess in several kinematic variables is consistent with being due to either nu(e) and (nu) over bar (e) charged-current scattering or nu(mu) neutral-current scattering with a photon in the final state. No significant excess of events is observed in the reconstructed neutrino energy range from 475 to 1250 MeV, where 408 events are obse…

PhysicsParticle physicsScatteringHadronAstrophysics (astro-ph)General Physics and AstronomyFOS: Physical sciencesAstrophysicsHigh Energy Physics - ExperimentNuclear physicsMiniBooNEHigh Energy Physics - PhenomenologyHigh Energy Physics - Experiment (hep-ex)High Energy Physics - Phenomenology (hep-ph)NeutrinoNucleonNeutrino oscillationEnergy (signal processing)Lepton
researchProduct

Physics at a neutrino factory

2000

In response to the growing interest in building a Neutrino Factory to produce high intensity beams of electron- and muon-neutrinos and antineutrinos, in October 1999 the Fermilab Directorate initiated two six-month studies. The first study, organized by N. Holtkamp and D. Finley, was to investigate the technical feasibility of an intense neutrino source based on a muon storage ring. This design study has produced a report in which the basic conclusion is that a Neutrino Factory is technically feasible, although it requires an aggressive R&amp;D program. The second study, which is the subject of this report, was to explore the physics potential of a Neutrino Factory as a function of the muon…

High Energy Physics - Experiment (hep-ex)High Energy Physics - PhenomenologyHigh Energy Physics - Phenomenology (hep-ph)Physics::Instrumentation and DetectorsFOS: Physical sciencesPhysics::Accelerator PhysicsHigh Energy Physics::ExperimentHigh Energy Physics - Experiment
researchProduct