0000000000489474

AUTHOR

J. P. Koschinsky

showing 3 related works from this author

Measurement of Atmospheric Neutrino Oscillations at 6–56 GeV with IceCube DeepCore

2018

We present a measurement of the atmospheric neutrino oscillation parameters using three years of data from the IceCube Neutrino Observatory. The DeepCore infill array in the center of IceCube enables the detection and reconstruction of neutrinos produced by the interaction of cosmic rays in Earth's atmosphere at energies as low as ∼5 GeV. That energy threshold permits measurements of muon neutrino disappearance, over a range of baselines up to the diameter of the Earth, probing the same range of L/Eν as long-baseline experiments but with substantially higher-energy neutrinos. This analysis uses neutrinos from the full sky with reconstructed energies from 5.6 to 56 GeV. We measure Δm322=2.31…

interaction [cosmic radiation]Physics::Instrumentation and DetectorsSolar neutrinoGeneral Physics and Astronomy01 natural sciences7. Clean energyHigh Energy Physics - ExperimentIceCubeSubatomär fysikHigh Energy Physics - Experiment (hep-ex)ObservatorySubatomic PhysicsTOOLPhysicsoscillation [neutrino]Astrophysics::Instrumentation and Methods for Astrophysicsatmosphere [neutrino]threshold [energy]mass difference [neutrino]ddc:observatoryNeutrino detectorPhysique des particules élémentairesAstrophysics::Earth and Planetary AstrophysicsNeutrinoParticle physicscosmic radiation [neutrino]acceleratorAstrophysics::High Energy Astrophysical PhenomenaFOS: Physical sciencesddc:500.2Physics and Astronomy(all)IceCube Neutrino ObservatoryPhysics and Astronomy (all)0103 physical sciencesneutrino/muddc:530energy: high [neutrino]010306 general physicsNeutrino oscillationAstroparticle physics010308 nuclear & particles physicsICEHigh Energy Physics::PhenomenologyAstronomySolar neutrino problemPhysics and Astronomy13. Climate actionmass [neutrino]High Energy Physics::ExperimentSYSTEMmixing angle [neutrino]experimental resultsPhysical Review Letters
researchProduct

Overview of first Wendelstein 7-X high-performance operation

2019

Abstract The optimized superconducting stellarator device Wendelstein 7-X (with major radius , minor radius , and plasma volume) restarted operation after the assembly of a graphite heat shield and 10 inertially cooled island divertor modules. This paper reports on the results from the first high-performance plasma operation. Glow discharge conditioning and ECRH conditioning discharges in helium turned out to be important for density and edge radiation control. Plasma densities of with central electron temperatures were routinely achieved with hydrogen gas fueling, frequently terminated by a radiative collapse. In a first stage, plasma densities up to were reached with hydrogen pellet injec…

TechnologyCONFINEMENT01 natural sciencesimpurities010305 fluids & plasmaslaw.inventionECR heatingDivertorDENSITY LIMITlawData_FILESGeneralLiterature_REFERENCE(e.g.dictionariesencyclopediasglossaries)004 Datenverarbeitung; InformatikPhysicsGlow dischargeDivertorCondensed Matter PhysicsContent (measure theory)ComputingMethodologies_DOCUMENTANDTEXTPROCESSINGElectron temperatureAtomic physicsddc:620StellaratorImpuritiesNuclear and High Energy PhysicsTechnology and Engineeringplasma performancechemistry.chemical_elementAtmospheric-pressure plasmaPHYSICSstellaratorPhysics::Plasma PhysicsNBI heating0103 physical sciencesdivertor010306 general physicsHeliumStellaratorPlasma performanceturbulenceFísicaW7-XTurbulenceTheoryofComputation_MATHEMATICALLOGICANDFORMALLANGUAGESchemistryddc:004ddc:600Energy (signal processing)SYSTEMNuclear Fusion
researchProduct

Computational Techniques for the Analysis of Small Signals in High-Statistics Neutrino Oscillation Experiments

2020

The current and upcoming generation of Very Large Volume Neutrino Telescopes – collecting unprecedented quantities of neutrino events – can be used to explore subtle effects in oscillation physics, such as (but not restricted to) the neutrino mass ordering. The sensitivity of an experiment to these effects can be estimated from Monte Carlo simulations. With the high number of events that will be collected, there is a trade-off between the computational expense of running such simulations and the inherent statistical uncertainty in the determined values. In such a scenario, it becomes impractical to produce and use adequately-sized sets of simulated events with traditional methods, such as M…

data analysis methodNuclear and High Energy PhysicsMonte Carlo methodFVLV nu TData analysis; Detector; KDE; MC; Monte Carlo; Neutrino; Neutrino mass ordering; Smoothing; Statistics; VLVνTData analysisKDEFOS: Physical sciences01 natural sciencesIceCubeHigh Energy Physics - ExperimentHigh Energy Physics - Experiment (hep-ex)statistical analysisnumerical methods0103 physical sciencesStatisticsNeutrinoddc:530Sensitivity (control systems)MC010306 general physicsNeutrino oscillationInstrumentation and Methods for Astrophysics (astro-ph.IM)InstrumentationMonte CarloPhysicsVLVνT010308 nuclear & particles physicsOscillationStatisticsoscillation [neutrino]ObservableDetectorMonte Carlo [numerical calculations]WeightingNeutrino mass orderingPhysics and AstronomyPhysics - Data Analysis Statistics and ProbabilityPhysique des particules élémentairesNeutrinoAstrophysics - Instrumentation and Methods for AstrophysicsMATTERData Analysis Statistics and Probability (physics.data-an)SmoothingSmoothing
researchProduct