0000000000489834
AUTHOR
Hong-ji Lin
Half-metallic ferromagnetism with high magnetic moment and high Curie temperature in Co$_2$FeSi
Co$_2$FeSi crystallizes in the ordered L2$_1$ structure as proved by X-ray diffraction and M\"o\ss bauer spectroscopy. The magnetic moment of Co$_2$FeSi was measured to be about $6\mu_B$ at 5K. Magnetic circular dichroism spectra excited by soft X-rays (XMCD) were taken to determine the element specific magnetic moments of Co and Fe. The Curie temperature was measured with different methods to be ($1100\pm20$)K. Co$_2$FeSi was found to be the Heusler compound as well as the half-metallic ferromagnet with the highest magnetic moment and Curie temperature.
Geometric, electronic, and magnetic structure of Co$_2$FeSi: Curie temperature and magnetic moment measurements and calculations
In this work a simple concept was used for a systematic search for new materials with high spin polarization. It is based on two semi-empirical models. Firstly, the Slater-Pauling rule was used for estimation of the magnetic moment. This model is well supported by electronic structure calculations. The second model was found particularly for Co$_2$ based Heusler compounds when comparing their magnetic properties. It turned out that these compounds exhibit seemingly a linear dependence of the Curie temperature as function of the magnetic moment. Stimulated by these models, Co$_2$FeSi was revisited. The compound was investigated in detail concerning its geometrical and magnetic structure by m…
Different Look at the Spin State ofCo3+Ions in aCoO5Pyramidal Coordination
Using soft-x-ray absorption spectroscopy at the Co ${L}_{2,3}$ and O $K$ edges, we demonstrate that the ${\mathrm{Co}}^{3+}$ ions with the ${\mathrm{CoO}}_{5}$ pyramidal coordination in the layered ${\mathrm{Sr}}_{2}{\mathrm{CoO}}_{3}\mathrm{Cl}$ compound are unambiguously in the high spin state. Our result questions the reliability of the spin state assignments made so far for the recently synthesized layered cobalt perovskites and calls for a reexamination of the modeling for the complex and fascinating properties of these new materials.
Investigation of Co$_2$FeSi: The Heusler compound with Highest Curie Temperature and Magnetic Moment
This work reports on structural and magnetic investigations of the Heusler compound Co$_2$FeSi. X-Ray diffraction and M\"o\ss bauer spectrometry indicate an ordered $L2_1$ structure. Magnetic measurements by means of X-ray magnetic circular dichroism and magnetometry revealed that this compound is, currently, the material with the highest magnetic moment ($6 \mu_B$) and Curie-temperature (1100K) in the classes of Heusler compounds as well as half-metallic ferromagnets.
Geometric, electronic, and magnetic structure ofCo2FeSi: Curie temperature and magnetic moment measurements and calculations
In this work a simple concept was used for a systematic search for materials with high spin polarization. It is based on two semiempirical models. First, the Slater-Pauling rule was used for estimation of the magnetic moment. This model is well supported by electronic structure calculations. The second model was found particularly for ${\mathrm{Co}}_{2}$ based Heusler compounds when comparing their magnetic properties. It turned out that these compounds exhibit seemingly a linear dependence of the Curie temperature as function of the magnetic moment. Stimulated by these models, ${\mathrm{Co}}_{2}\mathrm{FeSi}$ was revisited. The compound was investigated in detail concerning its geometrical…