0000000000489936

AUTHOR

F.p. Van Der Meer

showing 2 related works from this author

The effect of through-thickness compressive stress on mode II interlaminar fracture toughness

2017

Abstract The effect of through-thickness compressive stress on mode II interlaminar fracture toughness is investigated experimentally and replicated numerically. The modified Transverse Crack Tensile specimen recently proposed by the authors is used, together with an experimental device designed to apply a constant transverse compressive stress on the surface of the specimen. Experiments are conducted using IM7/8552 specimens for different compressive stresses, ranging from 0 to 100 MPa, covering all the practical applications commonly encountered in the aeronautical industry (e.g., tightened filled holes or bolted joints). It is shown that mode II interlaminar fracture toughness increases …

Compressive stressMaterials science/dk/atira/pure/subjectarea/asjc/2200/220502 engineering and technologyStress (mechanics)Settore ING-IND/14 - Progettazione Meccanica E Costruzione Di MacchineFracture toughness0203 mechanical engineeringUltimate tensile strength/dk/atira/pure/subjectarea/asjc/2500/2503Composite materialSettore ING-IND/04 - Costruzioni E Strutture AerospazialiCivil and Structural Engineeringbusiness.industryMode (statistics)Numerical modelsStructural engineering021001 nanoscience & nanotechnologySettore ING-IND/02 - Costruzioni E Impianti Navali E MariniTransverse planeSettore ING-IND/22 - Scienza E Tecnologia Dei Materiali020303 mechanical engineering & transportsCompressive strengthMode II delaminationBolted jointCeramics and CompositesSettore ICAR/08 - Scienza Delle Costruzioni0210 nano-technologybusinessInterlaminar fracture toughnessComposite Structures
researchProduct

The Transverse Crack Tension test revisited

2016

Several problems arise when measuring the mode II interlaminar fracture toughness using a Transverse Crack Tension specimen; in particular, the fracture toughness depends on the geometry of the specimen and cannot be considered a material parameter. A preliminary experimental campaign was conducted on TCTs of different sizes but no fracture toughness was measured because the TCTs failed in an unacceptable way, invalidating the tests. A comprehensive numerical and experimental investigation is conducted to identify the main causes of this behaviour and a modification of the geometry of the specimen is proposed. It is believed that the obtained results represent a significant contribution in …

EngineeringFracture toughne/dk/atira/pure/subjectarea/asjc/2200/2205Numerical analysiCeramics and Composite02 engineering and technologyExperimental methodSettore ING-IND/14 - Progettazione Meccanica E Costruzione Di MacchineFracture toughness0203 mechanical engineeringUltimate tensile strength/dk/atira/pure/subjectarea/asjc/2500/2503Composite materialCivil and Structural EngineeringTensile testingbusiness.industryTension (physics)Experimental methodsFracture mechanicsStructural engineeringFracture toughness021001 nanoscience & nanotechnologyTransverse planeSettore ING-IND/22 - Scienza E Tecnologia Dei Materiali020303 mechanical engineering & transportsDelaminationCeramics and Composites0210 nano-technologybusinessNumerical analysisComposite Structures
researchProduct