6533b821fe1ef96bd127b9a6
RESEARCH PRODUCT
The effect of through-thickness compressive stress on mode II interlaminar fracture toughness
Pedro P. CamanhoPedro P. CamanhoC. FurtadoC. FurtadoGiuseppe PitarresiF.p. Van Der MeerT. ScaliciGiuseppe Catalanottisubject
Compressive stressMaterials science/dk/atira/pure/subjectarea/asjc/2200/220502 engineering and technologyStress (mechanics)Settore ING-IND/14 - Progettazione Meccanica E Costruzione Di MacchineFracture toughness0203 mechanical engineeringUltimate tensile strength/dk/atira/pure/subjectarea/asjc/2500/2503Composite materialSettore ING-IND/04 - Costruzioni E Strutture AerospazialiCivil and Structural Engineeringbusiness.industryMode (statistics)Numerical modelsStructural engineering021001 nanoscience & nanotechnologySettore ING-IND/02 - Costruzioni E Impianti Navali E MariniTransverse planeSettore ING-IND/22 - Scienza E Tecnologia Dei Materiali020303 mechanical engineering & transportsCompressive strengthMode II delaminationBolted jointCeramics and CompositesSettore ICAR/08 - Scienza Delle Costruzioni0210 nano-technologybusinessInterlaminar fracture toughnessdescription
Abstract The effect of through-thickness compressive stress on mode II interlaminar fracture toughness is investigated experimentally and replicated numerically. The modified Transverse Crack Tensile specimen recently proposed by the authors is used, together with an experimental device designed to apply a constant transverse compressive stress on the surface of the specimen. Experiments are conducted using IM7/8552 specimens for different compressive stresses, ranging from 0 to 100 MPa, covering all the practical applications commonly encountered in the aeronautical industry (e.g., tightened filled holes or bolted joints). It is shown that mode II interlaminar fracture toughness increases with the applied compressive through-thickness stress. Finally, experiments are replicated using appropriate numerical models based on cohesive elements that take into account frictional effects. A good agreement between numerical predictions and experiments is found.
year | journal | country | edition | language |
---|---|---|---|---|
2017-12-15 | Composite Structures |