0000000000490156
AUTHOR
Brigitte Kühnel
Multi-ancestry genome-wide gene-sleep interactions identify novel loci for blood pressure.
AbstractLong and short sleep duration are associated with elevated blood pressure (BP), possibly through effects on molecular pathways that influence neuroendocrine and vascular systems. To gain new insights into the genetic basis of sleep-related BP variation, we performed genome-wide gene by short or long sleep duration interaction analyses on four BP traits (systolic BP, diastolic BP, mean arterial pressure, and pulse pressure) across five ancestry groups using 1 degree of freedom (1df) interaction and 2df joint tests. Primary multi-ancestry analyses in 62,969 individuals in stage 1 identified 3 novel loci that were replicated in an additional 59,296 individuals in stage 2, including rs7…
DeepWAS: Multivariate genotype-phenotype associations by directly integrating regulatory information using deep learning
Genome-wide association studies (GWAS) identify genetic variants associated with traits or diseases. GWAS never directly link variants to regulatory mechanisms. Instead, the functional annotation of variants is typically inferred by post hoc analyses. A specific class of deep learning-based methods allows for the prediction of regulatory effects per variant on several cell type-specific chromatin features. We here describe “DeepWAS”, a new approach that integrates these regulatory effect predictions of single variants into a multivariate GWAS setting. Thereby, single variants associated with a trait or disease are directly coupled to their impact on a chromatin feature in a cell type. Up to…