0000000000490318
AUTHOR
Kristaps Jaudzems
High-yield Production of Amyloid-β Peptide Enabled by a Customized Spider Silk Domain
AbstractDuring storage in the silk gland, the N-terminal domain (NT) of spider silk proteins (spidroins) keeps the aggregation-prone repetitive region in solution at extreme concentrations. We observe that NTs from different spidroins have co-evolved with their respective repeat region, and now use an NT that is distantly related to previously used NTs, for efficient recombinant production of the amyloid-β peptide (Aβ) implicated in Alzheimer’s disease. A designed variant of NT from Nephila clavipes flagelliform spidroin, which in nature allows production and storage of β-hairpin repeat segments, gives exceptionally high yields of different human Aβ variants as a solubility tag. This tool e…
BBE31 from the Lyme disease agent Borrelia burgdorferi, known to play an important role in successful colonization of the mammalian host, shows the ability to bind glutathione
Abstract Lyme disease is a tick-borne infection caused by Borrelia burgdorferi sensu lato complex spirochetes. The spirochete is located in the gut of the tick; as the infected tick starts the blood meal, the spirochete must travel through the hemolymph to the salivary glands, where it can spread to and infect the new host organism. In this study, we determined the crystal structures of the key outer surface protein BBE31 from B. burgdorferi and its orthologous protein BSE31 (BSPA14S_RS05060 gene product) from B. spielmanii. BBE31 is known to be important for the transfer of B. burgdorferi from the gut to the hemolymph in the tick after a tick bite. While BBE31 exerts its function by intera…
Targeting Bacterial Sortase A with Covalent Inhibitors: 27 New Starting Points for Structure-Based Hit-to-Lead Optimization.
Because of its essential role as a bacterial virulence factor, enzyme sortase A (SrtA) has become an attractive target for the development of new antivirulence drugs against Gram-positive infections. Here we describe 27 compounds identified as covalent inhibitors of
Potent SARS-CoV-2 mRNA Cap Methyltransferase Inhibitors by Bioisosteric Replacement of Methionine in SAM Cosubstrate
Viral mRNA cap methyltransferases (MTases) are emerging targets for the development of broad-spectrum antiviral agents. In this work, we designed potential SARS-CoV-2 MTase Nsp14 and Nsp16 inhibitors by using bioisosteric substitution of the sulfonium and amino acid substructures of the cosubstrate S-adenosylmethionine (SAM), which serves as the methyl donor in the enzymatic reaction. The synthetically accessible target structures were prioritized using molecular docking. Testing of the inhibitory activity of the synthesized compounds showed nanomolar to submicromolar IC50 values for five compounds. To evaluate selectivity, enzymatic inhibition of the human glycine N-methyltransferase invol…
Using HOESY NMR Spectroscopy to Characterize Prenucleation Aggregates
Large-Scale Recombinant Production of the SARS-CoV-2 Proteome for High-Throughput and Structural Biology Applications
The highly infectious disease COVID-19 caused by the Betacoronavirus SARS-CoV-2 poses a severe threat to humanity and demands the redirection of scientific efforts and criteria to organized research projects. The international COVID19-NMR consortium seeks to provide such new approaches by gathering scientific expertise worldwide. In particular, making available viral proteins and RNAs will pave the way to understanding the SARS-CoV-2 molecular components in detail. The research in COVID19-NMR and the resources provided through the consortium are fully disclosed to accelerate access and exploitation. NMR investigations of the viral molecular components are designated to provide the essential…
Structural and Functional Analysis of BBA03, Borrelia burgdorferi Competitive Advantage Promoting Outer Surface Lipoprotein
BBA03 is a Borrelia burgdorferi outer surface lipoprotein encoded on one of the most conserved plasmids in Borrelia genome, linear plasmid 54 (lp54). Although many of its genes have been identified as contributing or essential for spirochete fitness in vivo, the majority of the proteins encoded on this plasmid have no known function and lack homologs in other organisms. In this paper, we report the solution NMR structure of the B. burgdorferi outer surface lipoprotein BBA03, which is known to provide a competitive advantage to the bacteria during the transmission from tick vector to mammalian host. BBA03 shows structural homology to other outer surface lipoproteins reflecting their genetic …
Discovery and structure-activity relationship studies of irreversible benzisothiazolinone-based inhibitors against Staphylococcus aureus sortase A transpeptidase.
Gram-positive bacteria, in general, and staphylococci, in particular, are the widespread cause of nosocomial and community-acquired infections. The rapid evolvement of strains resistant to antibiotics currently in use is a serious challenge. Novel antimicrobial compounds have to be developed to fight these resistant bacteria, and sortase A, a bacterial cell wall enzyme, is a promising target for novel therapies. As a transpeptidase that covalently attaches various virulence factors to the cell surface, this enzyme plays a crucial role in the ability of bacteria to invade the host's tissues and to escape the immune response. In this study we have screened a small molecule library against rec…
Structural analysis of Borrelia burgdorferi periplasmic lipoprotein BB0365 involved in Lyme disease infection.
The periplasmic lipoprotein BB0365 of the Lyme disease agent Borrelia burgdorferi is expressed throughout mammalian infection and is essential for all phases of Lyme disease infection; its function, however, remains unknown. In the current study, our structural analysis of BB0365 revealed the same structural fold as that found in the NqrC and RnfG subunits of the NADH:quinone and ferredoxin:NAD+ sodium-translocating oxidoreductase complexes, which points to a potential role for BB0365 as a component of the sodium pump. Additionally, BB0365 coordinated Zn2+ by the His51, His55, His140 residues, and the Zn2+ -binding site indicates that BB0365 could act as a potential metalloenzyme; therefore…
Lunasin is a redox sensitive intrinsically disordered peptide with two transiently populated α-helical regions.
Lunasin is a 43 amino acid peptide with anti-cancer, antioxidant, anti-inflammatory and cholesterol-lowering properties. Although the mechanism of action of lunasin has been characterized to some extent, its exact three-dimensional structure as well as the function of the N-terminal sequence remains unknown. We established a novel method for the production of recombinant lunasin that allows efficient isotope labeling for NMR studies. Initial studies showed that lunasin can exist in a reduced or oxidized state with an intramolecular disulfide bond depending on solution conditions. The structure of both forms of the peptide at pH 3.5 and 6.5 was characterized by CD spectroscopy and multidimen…
Solution NMR structure of Borrelia burgdorferi outer surface lipoprotein BBP28, a member of the mlp protein family.
Lyme disease is the most widespread vector‐transmitted disease in North America and Europe, caused by infection with Borrelia burgdorferi sensu lato complex spirochetes. We report the solution NMR structure of the B. burgdorferi outer surface lipoprotein BBP28, a member of the multicopy lipoprotein (mlp) family. The structure comprises a tether peptide, five α‐helices and an extended C‐terminal loop. The fold is similar to that of Borrelia tunicate outer surface protein BTA121, which is known to bind lipids. These results contribute to the understanding of Lyme disease pathogenesis by revealing the molecular structure of a protein from the widely found mlp family. This article is protected …
Structural characterization of CspZ, a complement regulator factor H and FHL-1 binding protein fromBorrelia burgdorferi
Borrelia burgdorferi is the causative agent of Lyme disease and is found in two different types of hosts in nature - Ixodes ticks and various mammalian organisms. To initiate disease and survive in mammalian host organisms, B. burgdorferi must be able to transfer to a new host, proliferate, attach to different tissue and resist the immune response. To resist the host's immune response, B. burgdorferi produces at least five different outer surface proteins that can bind complement regulator factor H (CFH) and/or factor H-like protein 1 (CFHL-1). The crystal structures of two uniquely folded complement binding proteins, which belong to two distinct gene families and are not found in other bac…
Biomimetic composites with enhanced toughening using silk-inspired triblock proteins and aligned nanocellulose reinforcements
Silk-like proteins produced in bacteria are used as adhesives for cellulose nanofibrils to make a new biological material.
Enzymatic activity of circular sortase A under denaturing conditions: An advanced tool for protein ligation
Abstract Staphylococcus aureus sortase A is a transpeptidase that is extensively used in various protein research applications. Sortase A is highly selective and does not require any cofactors for the catalysis of protein ligation and, importantly, can be produced in high yields. However, the primary disadvantage of this transpeptidase is its inability to access the recognition site within the highly structured regions of folded substrates. To overcome this problem, we developed an Escherichia coli expression system that produces milligram quantities of circularly closed sortase A; efficient enzyme cyclization was achieved by Synechocystis sp. PCC6803 intein-mediated post-translational spli…
Structure of AP205 Coat Protein Reveals Circular Permutation in ssRNA Bacteriophages.
We are thankful to the MAX-lab staff for their support during our visit at the synchrotron.; International audience; AP205 is a single-stranded RNA bacteriophage that has a coat protein sequence not similar to any other known single-stranded RNA phage. Here, we report an atomic-resolution model of the AP205 virus-like particle based on a crystal structure of an unassembled coat protein dimer and a cryo-electron microscopy reconstruction of the assembled particle, together with secondary structure information from site-specific solid-state NMR data. The AP205 coat protein dimer adopts the conserved Leviviridae coat protein fold except for the N-terminal region, which forms a beta-hairpin in …