0000000000490519

AUTHOR

Maria Eugenia Castellanos

showing 5 related works from this author

Two-Stage Bayesian Approach for GWAS With Known Genealogy

2019

Genome-wide association studies (GWAS) aim to assess relationships between single nucleotide polymorphisms (SNPs) and diseases. They are one of the most popular problems in genetics, and have some peculiarities given the large number of SNPs compared to the number of subjects in the study. Individuals might not be independent, especially in animal breeding studies or genetic diseases in isolated populations with highly inbred individuals. We propose a family-based GWAS model in a two-stage approach comprising a dimension reduction and a subsequent model selection. The first stage, in which the genetic relatedness between the subjects is taken into account, selects the promising SNPs. The se…

0301 basic medicineStatistics and ProbabilityBayesian probabilityPopulationSingle-nucleotide polymorphismGenome-wide association studyComputational biologyEstadísticaBiologyKinship coefficientModel selection01 natural sciencesBeta-thalassemia010104 statistics & probability03 medical and health sciencesBeta-thalassemia disorderModelsRobust prior distributionRegularizationDiscrete Mathematics and Combinatorics0101 mathematicsStage (cooking)Genetic associationGenome-wide associationModel selectionVariable-selectionProbability and statisticsBayes factorRegressionBayes factor030104 developmental biologyPhenotypeStatistics Probability and UncertaintyGaussian Markov random field
researchProduct

Bayesian Checking of the Second Levels of Hierarchical Models

2007

Hierarchical models are increasingly used in many applications. Along with this increased use comes a desire to investigate whether the model is compatible with the observed data. Bayesian methods are well suited to eliminate the many (nuisance) parameters in these complicated models; in this paper we investigate Bayesian methods for model checking. Since we contemplate model checking as a preliminary, exploratory analysis, we concentrate on objective Bayesian methods in which careful specification of an informative prior distribution is avoided. Numerous examples are given and different proposals are investigated and critically compared.

FOS: Computer and information sciencesStatistics and ProbabilityModel checkingModel checkingComputer scienceconflictGeneral MathematicsBayesian probabilityMachine learningcomputer.software_genreMethodology (stat.ME)partial posterior predictivePrior probabilityStatistics - Methodologybusiness.industrymodel criticismProbability and statisticsExploratory analysisobjective Bayesian methodsempirical-Bayesposterior predictivep-valuesArtificial intelligenceStatistics Probability and Uncertaintybusinesscomputer
researchProduct

Bayesian analysis of a disability model for lung cancer survival

2016

Bayesian reasoning, survival analysis and multi-state models are used to assess survival times for Stage IV non-small-cell lung cancer patients and the evolution of the disease over time. Bayesian estimation is done using minimum informative priors for the Weibull regression survival model, leading to an automatic inferential procedure. Markov chain Monte Carlo methods have been used for approximating posterior distributions and the Bayesian information criterion has been considered for covariate selection. In particular, the posterior distribution of the transition probabilities, resulting from the multi-state model, constitutes a very interesting tool which could be useful to help oncolog…

Statistics and ProbabilityLung NeoplasmsEpidemiologyComputer scienceMatemáticasPosterior probabilityBayesian probabilityEstadísticaBiostatisticsAccelerated failure time modelsBayesian inference01 natural sciences010104 statistics & probability03 medical and health sciencesBayes' theoremsymbols.namesake0302 clinical medicineHealth Information ManagementBayesian information criterionCarcinoma Non-Small-Cell LungStatisticsPrior probabilityHumans0101 mathematicsBiología y BiomedicinaNeoplasm StagingInformáticaBayes estimatorBayes TheoremMarkov chain Monte CarloSurvival AnalysisBayesian information criterionMarkov Chains030220 oncology & carcinogenesisMinimum informative priorsymbolsMulti-state modelsRegression AnalysisWeibull distributionMonte Carlo Method
researchProduct

Rejoinder: Bayesian Checking of the Second Levels of Hierarchical Models

2008

Rejoinder: Bayesian Checking of the Second Levels of Hierarchical Models [arXiv:0802.0743]

Statistics and ProbabilityModel checkingFOS: Computer and information sciencesStatistics::TheoryDistribution (number theory)Computer sciencebusiness.industryGeneral MathematicsBayesian probabilityProbability and statisticsMachine learningcomputer.software_genreComputer Science::Digital LibrariesStatistics::ComputationMethodology (stat.ME)Test statisticStatistics::MethodologyArtificial intelligenceStatistics Probability and UncertaintybusinesscomputerStatistics - Methodology
researchProduct

MCMC methods to approximate conditional predictive distributions

2006

Sampling from conditional distributions is a problem often encountered in statistics when inferences are based on conditional distributions which are not of closed-form. Several Markov chain Monte Carlo (MCMC) algorithms to simulate from them are proposed. Potential problems are pointed out and some suitable modifications are suggested. Approximations based on conditioning sets are also explored. The issues are illustrated within a specific statistical tool for Bayesian model checking, and compared in an example. An example in frequentist conditional testing is also given.

Statistics and ProbabilityMarkov chainApplied MathematicsMarkov chain Monte CarloConditional probability distributionBayesian inferenceComputational Mathematicssymbols.namesakeMetropolis–Hastings algorithmComputational Theory and MathematicsSampling distributionFrequentist inferencesymbolsEconometricsAlgorithmMathematicsGibbs samplingComputational Statistics & Data Analysis
researchProduct