0000000000490549
AUTHOR
David Haziza
Model-Assisted Estimation Through Random Forests in Finite Population Sampling
In surveys, the interest lies in estimating finite population parameters such as population totals and means. In most surveys, some auxiliary information is available at the estimation stage. This information may be incorporated in the estimation procedures to increase their precision. In this article, we use random forests (RFs) to estimate the functional relationship between the survey variable and the auxiliary variables. In recent years, RFs have become attractive as National Statistical Offices have now access to a variety of data sources, potentially exhibiting a large number of observations on a large number of variables. We establish the theoretical properties of model-assisted proc…
Imputation Procedures in Surveys Using Nonparametric and Machine Learning Methods: An Empirical Comparison
Abstract Nonparametric and machine learning methods are flexible methods for obtaining accurate predictions. Nowadays, data sets with a large number of predictors and complex structures are fairly common. In the presence of item nonresponse, nonparametric and machine learning procedures may thus provide a useful alternative to traditional imputation procedures for deriving a set of imputed values used next for the estimation of study parameters defined as solution of population estimating equation. In this paper, we conduct an extensive empirical investigation that compares a number of imputation procedures in terms of bias and efficiency in a wide variety of settings, including high-dimens…