Fulfilling the dream: tolerogenic dendritic cells to treat multiple sclerosis.
Autoimmune diseases including multiple sclerosis (MS) are the result of an imbalanced immune tolerance network. Dendritic cells (DCs) are key players in both initiating immunity (immunogenic DCs) and regulating immune responses (tolerogenic DCs = tolDCs) and are potential targets for the treatment of MS. While the immunogenic potential of DCs in fighting infection and cancer has been well established, approaches that exploit their tolerogenic features to promote transplantation tolerance and autoimmunity have emerged only more recently. TolDCs usually maintain antigen-specific T-cell tolerance either directly by inducing anergy, apoptosis, or phenotype skewing or indirectly by induction of …
Interferon-Beta Therapy of Multiple Sclerosis Patients Improves the Responsiveness of T Cells for Immune Suppression by Regulatory T Cells
Multiple sclerosis (MS) is an inflammatory autoimmune disease characterized by imbalanced immune regulatory networks, and MS patient-derived T effector cells are inefficiently suppressed through regulatory T cells (Treg), a phenomenon known as Treg resistance. In the current study we investigated T cell function in MS patients before and after interferon-beta therapy. We compared cytokine profile, responsiveness for Treg-mediated suppression ex vivo and evaluated reactivity of T cells in vivo using a humanized mouse model. We found that CD4+ and CD8+ T cells of therapy-naive MS patients were resistant to Treg-mediated suppression. Treg resistance is associated with an augmented IL-6 product…
Ultraviolet B light attenuates the systemic immune response in central nervous system autoimmunity
Objective: Environmental conditions (eg, latitude) play a critical role in the susceptibility and severity of many autoimmune disorders, including multiple sclerosis (MS). Here, we investigated the mechanisms underlying the beneficial effects of immune regulatory processes induced in the skin by moderate ultraviolet B (UVB) radiation on central nervous system (CNS) autoimmunity. Methods: Effects of UVB light were analyzed in a murine model of CNS autoimmunity (experimental autoimmune encephalomyelitis). Additionally, patients with relapsing–remitting MS were treated with narrowband UVB phototherapy. Immunomodulatory effects were examined in skin biopsies, serum samples, and immune cells of …
Dimethyl fumarate treatment restrains the antioxidative capacity of T cells to control autoimmunity
Abstract Dimethyl fumarate, an approved treatment for relapsing-remitting multiple sclerosis, exerts pleiotropic effects on immune cells as well as CNS resident cells. Here, we show that dimethyl fumarate exerts a profound alteration of the metabolic profile of human CD4+ as well as CD8+ T cells and restricts their antioxidative capacities by decreasing intracellular levels of the reactive oxygen species scavenger glutathione. This causes an increase in mitochondrial reactive oxygen species levels accompanied by an enhanced mitochondrial stress response, ultimately leading to impaired mitochondrial function. Enhanced mitochondrial reactive oxygen species levels not only result in enhanced T…
Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells
Aberrant immune responses represent the underlying cause of central nervous system (CNS) autoimmunity, including multiple sclerosis (MS). Recent evidence implicated the crosstalk between coagulation and immunity in CNS autoimmunity. Here we identify coagulation factor XII (FXII), the initiator of the intrinsic coagulation cascade and the kallikrein–kinin system, as a specific immune cell modulator. High levels of FXII activity are present in the plasma of MS patients during relapse. Deficiency or pharmacologic blockade of FXII renders mice less susceptible to experimental autoimmune encephalomyelitis (a model of MS) and is accompanied by reduced numbers of interleukin-17A-producing T cells.…
Sunlight exposure exerts immunomodulatory effects to reduce multiple sclerosis severity
AbstractBackgroundMultiple sclerosis (MS) disease risk is associated with reduced sun exposure. This study assessed the relationship between measures of sun-exposure (vitamin D (vitD), latitude) and MS disease severity, the mechanisms of action, and effect-modification by medication and sun-sensitivity associated MC1R variants.MethodsTwo multi-center cohort studies (nNationMS=946, nBIONAT=991). Outcomes were the multiple sclerosis severity score (MSSS) and the number of Gd-enhancing lesion (GELs). RNAseq of four immune cell populations before and after UV-phototherapy of five MS patients.ResultsHigh serum vitD was associated with reduced MSSS (PNationMS=0.021; PBIONAT=0.007) and reduced ris…
High anti-JCPyV serum titers coincide with high CSF cell counts in RRMS patients
Background: Progressive multifocal leukoencephalopathy (PML) can in rare cases occur in natalizumab-treated patients with high serum anti-JCPyV antibodies, hypothetically due to excessive blockade of immune cell migration. Objective: Immune cell recruitment to the central nervous system (CNS) was assessed in relapsing-remitting multiple sclerosis (RRMS) patients stratified by low versus high anti-JCPyV antibody titers as indicator for PML risk. Methods: Cerebrospinal fluid (CSF) cell counts of 145 RRMS patients were quantified by flow cytometry. Generalized linear models were employed to assess influence of age, sex, disease duration, Expanded Disability Status Scale (EDSS), clinical/radiol…