0000000000493839
AUTHOR
Marjo Pihlavisto
Fluorescent Small Molecule Probe to Modulate and Explore α2β1 Integrin Function
Collagen binding integrins are an important family of cell surface receptors that mediate bidirectionally signals between the interior of the cell and the extracellular matrix. The protein-protein interactions between cells and collagen are necessary for many physiological functions, but also promote diseases. For example, the interaction of α2β1 integrin and collagen has been shown to have an important role in thrombus formation and cancer spread. The fact that the discovery of small molecules that can block such protein-protein interactions is highly challenging has significantly hindered the discovery of pharmaceutical agents to treat these diseases. Here, we present a rationally designe…
Novel α2β1 integrin inhibitors reveal that integrin binding to collagen under shear stress conditions does not require receptor preactivation.
The interaction between α2β1 integrin (GPIa/IIa, VLA-2) and vascular collagen is one of the initiating events in thrombus formation. Here, we describe two structurally similar sulfonamide derivatives, BTT-3033 and BTT-3034, and show that, under static conditions, they have an almost identical effect on α2-expressing CHO cell adhesion to collagen I, but only BTT-3033 blocks platelet attachment under flow (90 dynes/cm(2)). Differential scanning fluorimetry showed that both molecules bind to the α2I domain of the recombinant α2 subunit. To further study integrin binding mechanism(s) of the two sulfonamides, we created an α2 Y285F mutant containing a substitution near the metal ion-dependent ad…
Synthesis, in vitro activity, and three-dimensional quantitative structure-activity relationship of novel hydrazine inhibitors of human vascular adhesion protein-1.
Vascular adhesion protein-1 (VAP-1) belongs to the semicarbazide-sensitive amine oxidases (SSAOs) that convert amines into aldehydes. SSAOs are distinct from the mammalian monoamine oxidases (MAOs), but their substrate specificities are partly overlapping. VAP-1 has been proposed as a target for anti-inflammatory drug therapy because of its role in leukocyte adhesion to endothelium. Here, we describe the synthesis and in vitro activities of novel series of VAP-1 selective inhibitors. In addition, the molecular dynamics simulations performed for VAP-1 reveal that the movements of Met211, Ser496, and especially Leu469 can enlarge the ligand-binding pocket, allowing larger ligands than those s…
Novel Hydrazine Molecules as Tools To Understand the Flexibility of Vascular Adhesion Protein-1 Ligand-Binding Site: Toward More Selective Inhibitors
Vascular adhesion protein-1 (VAP-1) belongs to a family of amine oxidases. It plays a role in leukocyte trafficking and in amine compound metabolism. VAP-1 is linked to various diseases, such as Alzheimer's disease, psoriasis, depression, diabetes, and obesity. Accordingly, selective inhibitors of VAP-1 could potentially be used to treat those diseases. In this study, eight novel VAP-1 hydrazine derivatives were synthesized and their VAP-1 and monoamine oxidase (MAO) inhibition ability was determined in vitro. MD simulations of VAP-1 with these new molecules reveal that the VAP-1 ligand-binding pocket is flexible and capable of fitting substantially larger ligands than was previously believ…
Blockage of collagen binding to integrin α2β1: structure–activity relationship of protein–protein interaction inhibitors
The interaction between the α2β1 integrin and collagen plays a crucial role in the development of pathological conditions, such as thrombus formation and cancer cell metastasis. Accordingly, the α2β1 integrin is a promising target for the development of new drug molecules to treat these diseases. Here, we have designed, synthesized, and measured in vitro a set of novel drug-like compounds that block the protein–protein interactions between α2β1 integrin and collagen. The obtained structure–activity relationship reveals the key features that are required for successful inhibition of this integrin–collagen interaction.