0000000000494466

AUTHOR

Xiting Yuan

showing 11 related works from this author

From Symmetry Breaking to Unraveling the Origin of the Chirality of Ligated Au13Cu2 Nanoclusters

2018

A general method, using mixed ligands (here diphosphines and thiolates) is devised to turn an achiral metal cluster, Au13Cu2, into an enantiomeric pair by breaking (lowering) the overall molecular symmetry with the ligands. Using an achiral diphosphine, a racemic [Au13Cu2(DPPP)3(SPy)6]+ was prepared which crystallizes in centrosymmetric space groups. Using chiral diphosphines, enantioselective synthesis of an optically pure, enantiomeric pair of [Au13Cu2((2r,4r)/(2s,4s)‐BDPP)3(SPy)6]+ was achieved in one pot. Their circular dichroism (CD) spectra give perfect mirror images in the range of 250–500 nm with maximum anisotropy factors of 1.2×10−3. DFT calculations provided good correlations wit…

nanoclusterschiralitynanohiukkaset
researchProduct

From Symmetry Breaking to Unraveling the Origin of the Chirality of Ligated Au13 Cu2 Nanoclusters

2018

A general method, using mixed ligands (here diphosphines and thiolates) is devised to turn an achiral metal cluster, Au13 Cu2 , into an enantiomeric pair by breaking (lowering) the overall molecular symmetry with the ligands. Using an achiral diphosphine, a racemic [Au13 Cu2 (DPPP)3 (SPy)6 ]+ was prepared which crystallizes in centrosymmetric space groups. Using chiral diphosphines, enantioselective synthesis of an optically pure, enantiomeric pair of [Au13 Cu2 ((2r,4r)/(2s,4s)-BDPP)3 (SPy)6 ]+ was achieved in one pot. Their circular dichroism (CD) spectra give perfect mirror images in the range of 250-500 nm with maximum anisotropy factors of 1.2×10-3 . DFT calculations provided good corre…

Circular dichroismta114Chemistry010405 organic chemistrynanoclustersEnantioselective synthesischirality02 engineering and technologyGeneral ChemistryGeneral Medicine021001 nanoscience & nanotechnology010402 general chemistry01 natural sciencesCatalysisNanoclusters0104 chemical sciencesCrystallographyDiphosphinesMolecular symmetrynanohiukkasetEnantiomer0210 nano-technologyChirality (chemistry)ta116RacemizationAngewandte Chemie
researchProduct

Atomically Precise Alkynyl- and Halide-Protected AuAg Nanoclusters Au78Ag66(C≡CPh)48Cl8 and Au74Ag60(C≡CPh)40Br12: The Ligation Effects of Halides

2021

Reported herein are the synthesis and structures of two high-nuclearity AuAg nanoclusters, namely, [Au78Ag66(C≡CPh)48Cl8]q− and [Au74Ag60(C≡CPh)40Br12]2–. Both clusters possess a three-concentric-s...

Inorganic Chemistry010405 organic chemistryChemistryPolymer chemistryHalidePhysical and Theoretical Chemistry010402 general chemistry01 natural sciences0104 chemical sciencesNanoclustersInorganic Chemistry
researchProduct

Combinatorial Identification of Hydrides in a Ligated Ag40 Nanocluster with Noncompact Metal Core

2019

No formation of bulk silver hydride has been reported. Until very recently, only a few silver nanoclusters containing hydrides have been successfully prepared. However, due to the lack of effective techniques and also poor stability of hydride-containing Ag nanoclusters, the identification of hydrides' location within Ag nanoclusters is challenging and not yet achieved, although some successes have been reported on clusters of several Ag atoms. In this work, we report a detailed structural and spectroscopic characterization of the [Ag40(DMBT)24(PPh3)8H12]2+ (Ag40H12) cluster (DMBT = 2,4-dimethylbenzenethiol). The metal framework consists of three concentric shells of Ag8@Ag24@Ag8, which can…

HydrideChemistryGeneral ChemistryElectron010402 general chemistry01 natural sciencesBiochemistryCatalysis0104 chemical sciencesCharacterization (materials science)NanomaterialsNanoclustersNMR spectra databaseMetalCrystallographyColloid and Surface Chemistryvisual_artvisual_art.visual_art_mediumCluster (physics)Journal of the American Chemical Society
researchProduct

Combinatorial Identification of Hydrides in a Ligated Ag40 Nanocluster with Non-compact Metal Core

2019

No formation of bulk silver hydride has been reported. Until very recently, only few silver nanoclusters containing hydrides have been successfully prepared. However, due to the lack of effective techniques and also poor stability of hydride-containing Ag nanoclusters, the identification of hydrides’ location within Ag nanoclusters is challenging and not yet achieved although some successes have been reported on clusters of several Ag atoms. In this work, we report a detailed structural and spectroscopic characterization of the [Ag40(DMBT)24(PPh3)8H12]2+ (Ag40H12) cluster (DMBT=2,4-dimethylbenzenethiol). The metal framework consists of three-concentric shells of Ag8@Ag24@Ag8 which can be de…

hopeahydriditnanoklusteritsilvermetal hydridemetal nanoclustermetallitmetallihydriditcoinage metal
researchProduct

CCDC 2044601: Experimental Crystal Structure Determination

2021

Related Article: Xiting Yuan, Sami Malola, Guocheng Deng, Fengjiao Chen, Hannu Häkkinen, Boon K. Teo, Lansun Zheng, Nanfeng Zheng|2021|Inorg.Chem.|60|3529|doi:10.1021/acs.inorgchem.0c03462

Space GroupCrystallographyoctatetracontakis(mu-phenylethynyl)-octakis(mu-chloro)-octaheptaconta-gold-hexahexaconta-silverCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 2044592: Experimental Crystal Structure Determination

2021

Related Article: Xiting Yuan, Sami Malola, Guocheng Deng, Fengjiao Chen, Hannu Häkkinen, Boon K. Teo, Lansun Zheng, Nanfeng Zheng|2021|Inorg.Chem.|60|3529|doi:10.1021/acs.inorgchem.0c03462

Space GroupCrystallographyCrystal SystemCrystal StructureCell Parametersbis(tetraphenylphosphanium) tetracontakis(mu-phenylethynyl)-dodecakis(mu-bromo)-tetraheptaconta-gold-hexaconta-silverExperimental 3D Coordinates
researchProduct

CCDC 1814032: Experimental Crystal Structure Determination

2018

Related Article: Guocheng Deng, Sami Malola, Juanzhu Yan, Yingzi Han, Peng Yuan, Chaowei Zhao, Xiting Yuan, Shuichao Lin, Zichao Tang, Boon K. Teo, Hannu Häkkinen, Nanfeng Zheng|2018|Angew.Chem.,Int.Ed.|57|3421|doi:10.1002/anie.201800327

tris(mu-13-bis(diphenylphosphino)propane)-hexakis(mu-pyridine-2-thiolato)-di-copper-trideca-goldSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1814033: Experimental Crystal Structure Determination

2018

Related Article: Guocheng Deng, Sami Malola, Juanzhu Yan, Yingzi Han, Peng Yuan, Chaowei Zhao, Xiting Yuan, Shuichao Lin, Zichao Tang, Boon K. Teo, Hannu Häkkinen, Nanfeng Zheng|2018|Angew.Chem.,Int.Ed.|57|3421|doi:10.1002/anie.201800327

tris(mu-(2S4S)-(-)-24-bis(diphenylphosphino)pentane)-hexakis(mu-pyridine-2-thiolato)-di-copper-trideca-goldSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1942682: Experimental Crystal Structure Determination

2019

Related Article: Xiting Yuan, Cunfa Sun, Xihua Li, Sami Malola, Boon K. Teo, Hannu Häkkinen, Lan-Sun Zheng, Nanfeng Zheng|2019|J.Am.Chem.Soc.|141|11905|doi:10.1021/jacs.9b03009

dodecakis(mu-hydrido)-tetracosakis(mu-24-dimethylbenzene-1-thiolato)-octakis(triphenylphosphine)-tetraconta-silverSpace GroupCrystallographyCrystal SystemCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct

CCDC 1814031: Experimental Crystal Structure Determination

2018

Related Article: Guocheng Deng, Sami Malola, Juanzhu Yan, Yingzi Han, Peng Yuan, Chaowei Zhao, Xiting Yuan, Shuichao Lin, Zichao Tang, Boon K. Teo, Hannu Häkkinen, Nanfeng Zheng|2018|Angew.Chem.,Int.Ed.|57|3421|doi:10.1002/anie.201800327

Space GroupCrystallographyCrystal Systemtris(mu-(2R4R)-(+)-24-bis(diphenylphosphino)pentane)-hexakis(mu-pyridine-2-thiolato)-di-copper-trideca-goldCrystal StructureCell ParametersExperimental 3D Coordinates
researchProduct